Product Citations: 12

The centrosomal protein 131 participates in the regulation of mitochondrial apoptosis.

In Communications Biology on 15 December 2023 by Renaud, C. C. N., Trillet, K., et al.

Centriolar satellites are multiprotein aggregates that orbit the centrosome and govern centrosome homeostasis and primary cilia formation. In contrast to the scaffold PCM1, which nucleates centriolar satellites and has been linked to microtubule dynamics, autophagy, and intracellular trafficking, the functions of its interactant CEP131 beyond ciliogenesis remain unclear. Using a knockout strategy in a non-ciliary T-cell line, we report that, although dispensable for centriolar satellite assembly, CEP131 participates in optimal tubulin glycylation and polyglutamylation, and microtubule regrowth. Our unsupervised label-free proteomic analysis by quantitative mass spectrometry further uncovered mitochondrial and apoptotic signatures. CEP131-deficient cells showed an elongated mitochondrial network. Upon cell death inducers targeting mitochondria, knockout cells displayed delayed cytochrome c release from mitochondria, subsequent caspase activation, and apoptosis. This mitochondrial permeabilization defect was intrinsic, and replicable in vitro with isolated organelles. These findings extend CEP131 functions to life-and-death decisions and propose ways to interfere with mitochondrial apoptosis.
© 2023. The Author(s).

  • Cell Biology

SARS-CoV-2 Spike Does Not Possess Intrinsic Superantigen-like Inflammatory Activity.

In Cells on 15 August 2022 by Amormino, C., Tedeschi, V., et al.

Multisystem inflammatory syndrome in children (MIS-C) is a rare hyperinflammatory disease occurring several weeks after SARS-CoV-2 infection. The clinical similarities between MIS-C and the toxic shock syndrome, together with the preferential expansion of T cells with a T-cell receptor variable β chain (TCRVβ) skewing, suggested a superantigen theory of MIS-C. For instance, recent in silico modelling evidenced the presence of a highly conserved motif within SARS-CoV-2 spike protein similar in structure to the superantigenic fragment of staphylococcal enterotoxin B (SEB). However, experimental data on the superantigenic activity of the SARS-CoV-2 spike have not yet been provided. Here, we assessed the superantigenic activity of the SARS-CoV-2 spike by analysing inflammatory cytokine production in both Jurkat cells and the peripheral blood CD4+ T cells stimulated with the SARS-CoV-2 spike or SEB as a control. We found that, unlike SEB, the SARS-CoV-2 spike does not exhibit an intrinsic superantigen-like activity.

  • Cell Biology
  • COVID-19
  • Immunology and Microbiology

We study a patient with the human papilloma virus (HPV)-2-driven "tree-man" phenotype and two relatives with unusually severe HPV4-driven warts. The giant horns form an HPV-2-driven multifocal benign epithelial tumor overexpressing viral oncogenes in the epidermis basal layer. The patients are unexpectedly homozygous for a private CD28 variant. They have no detectable CD28 on their T cells, with the exception of a small contingent of revertant memory CD4+ T cells. T cell development is barely affected, and T cells respond to CD3 and CD2, but not CD28, costimulation. Although the patients do not display HPV-2- and HPV-4-reactive CD4+ T cells in vitro, they make antibodies specific for both viruses in vivo. CD28-deficient mice are susceptible to cutaneous infections with the mouse papillomavirus MmuPV1. The control of HPV-2 and HPV-4 in keratinocytes is dependent on the T cell CD28 co-activation pathway. Surprisingly, human CD28-dependent T cell responses are largely redundant for protective immunity.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • ELISA
  • Homo sapiens (Human)
  • Immunology and Microbiology

FYN-TRAF3IP2 induces NF-κB signaling-driven peripheral T cell lymphoma.

In Nature Cancer on 1 January 2021 by Moon, C. S., Reglero, C., et al.

Angioimmunoblastic T cell lymphoma (AITL) and peripheral T cell lymphoma not-otherwise-specified (PTCL, NOS) have poor prognosis and lack driver actionable targets for directed therapies in most cases. Here we identify FYN-TRAF3IP2 as a recurrent oncogenic gene fusion in AITL and PTCL, NOS tumors. Mechanistically, we show that FYN-TRAF3IP2 leads to aberrant NF-κB signaling downstream of T cell receptor activation. Consistent with a driver oncogenic role, FYN-TRAF3IP2 expression in hematopoietic progenitors induces NF-κB-driven T cell transformation in mice and cooperates with loss of the Tet2 tumor suppressor in PTCL development. Moreover, abrogation of NF-κB signaling in FYN-TRAF3IP2-induced tumors with IκB kinase inhibitors delivers strong anti-lymphoma effects in vitro and in vivo. These results demonstrate an oncogenic and pharmacologically targetable role for FYN-TRAF3IP2 in PTCLs and call for the clinical testing of anti-NF-κB targeted therapies in these diseases.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

IL-22 is a member of the IL-10 cytokine family involved in host protection against extracellular pathogens, by promoting epithelial cell regeneration and barrier functions. Dysregulation of IL-22 production has also frequently been observed in acute respiratory distress syndrome (ARDS) and several chronic inflammatory and autoimmune diseases. We have previously described that human CD28, a crucial co-stimulatory receptor necessary for full T cell activation, is also able to act as a TCR independent signaling receptor and to induce the expression of IL-17A and inflammatory cytokines related to Th17 cells, which together with Th22 cells represent the main cellular source of IL-22. Here we characterized the role of CD28 autonomous signaling in regulating IL-22 expression in human CD4+ T cells. We show that CD28 stimulation in the absence of TCR strongly up-regulates IL-22 gene expression and secretion. As recently observed for IL-17A, we also found that CD28-mediated regulation of IL-22 transcription requires the cooperative activities of both IL-6-activated STAT3 and RelA/NF-κB transcription factors. CD28-mediated IL-22 production also promotes the barrier functions of epithelial cells by inducing mucin and metalloproteases expression. Finally, by using specific inhibitory drugs, we also identified CD28-associated class 1A phosphatidylinositol 3-kinase (PI3K) as a pivotal mediator of CD28-mediated IL-22 expression and IL-22-dependent epithelial cell barrier functions.
Copyright © 2020 Kunkl, Amormino, Frascolla, Sambucci, De Bardi, Caristi, Arcieri, Battistini and Tuosto.

  • Immunology and Microbiology
View this product on CiteAb