Product Citations: 9

Extracellular vesicles in fatty liver promote a metastatic tumor microenvironment.

In Cell Metabolism on 11 July 2023 by Wang, Z., Kim, S. Y., et al.

Liver metastasis is a major cause of death in patients with colorectal cancer (CRC). Fatty liver promotes liver metastasis, but the underlying mechanism remains unclear. We demonstrated that hepatocyte-derived extracellular vesicles (EVs) in fatty liver enhanced the progression of CRC liver metastasis by promoting oncogenic Yes-associated protein (YAP) signaling and an immunosuppressive microenvironment. Fatty liver upregulated Rab27a expression, which facilitated EV production from hepatocytes. In the liver, these EVs transferred YAP signaling-regulating microRNAs to cancer cells to augment YAP activity by suppressing LATS2. Increased YAP activity in CRC liver metastasis with fatty liver promoted cancer cell growth and an immunosuppressive microenvironment by M2 macrophage infiltration through CYR61 production. Patients with CRC liver metastasis and fatty liver had elevated nuclear YAP expression, CYR61 expression, and M2 macrophage infiltration. Our data indicate that fatty liver-induced EV-microRNAs, YAP signaling, and an immunosuppressive microenvironment promote the growth of CRC liver metastasis.
Copyright © 2023 Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Cancer Research

Collagen remodeling dictates pancreatic cancer bioenergetics and outcome through DDR1 activation or degradation

Preprint on BioRxiv : the Preprint Server for Biology on 4 April 2022 by Su, H., Yang, F., et al.

Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic, aggressive cancer that frequently progresses by liver metastasis 1 . Cancer-associated fibroblasts (CAF), extracellular matrix (ECM), and type I collagen (Col I) support 2–5 or restrain PDAC progression and may impede blood supply and nutrient availability 6–8 . The dichotomous role of the stroma in PDAC, and the mechanisms through which it influences patient survival and enables desmoplastic cancers escape nutrient limitation remain poorly understood. Here we show that matrix metalloprotease (MMP)-cleaved or intact Col I (cCol I and iCol I, respectively) exert opposing effects on PDAC bioenergetics, macropinocytosis (MP), tumor growth and liver metastasis. While cCol I activates DDR1 (discoidin domain receptor-1)-NF-κB-p62-NRF2 signaling to promote PDAC growth, iCol I triggers DDR1 degradation and restrains PDAC growth. Patients whose tumors are enriched in iCol I and low in DDR1 and NRF2 have improved median survival compared to those enriched in cCol I, DDR1 and NRF2. Inhibition of DDR1-stimulated NF-κB or mitochondrial biogenesis blocked tumorigenesis in wildtype mice but not in mice expressing MMP-resistant Col I. In summary, the diverse effects of tumor stroma on PDAC growth, metastasis, and patient survival are mediated through the Col I-DDR1-NF-κB-NRF2-mitochondrial biogenesis pathway, presenting multiple new opportunities for PDAC therapy.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

Cancer cells escape autophagy inhibition via NRF2-induced macropinocytosis.

In Cancer Cell on 10 May 2021 by Su, H., Yang, F., et al.

Many cancers, including pancreatic ductal adenocarcinoma (PDAC), depend on autophagy-mediated scavenging and recycling of intracellular macromolecules, suggesting that autophagy blockade should cause tumor starvation and regression. However, until now autophagy-inhibiting monotherapies have not demonstrated potent anti-cancer activity. We now show that autophagy blockade prompts established PDAC to upregulate and utilize an alternative nutrient procurement pathway: macropinocytosis (MP) that allows tumor cells to extract nutrients from extracellular sources and use them for energy generation. The autophagy to MP switch, which may be evolutionarily conserved and not cancer cell restricted, depends on activation of transcription factor NRF2 by the autophagy adaptor p62/SQSTM1. NRF2 activation by oncogenic mutations, hypoxia, and oxidative stress also results in MP upregulation. Inhibition of MP in autophagy-compromised PDAC elicits dramatic metabolic decline and regression of transplanted and autochthonous tumors, suggesting the therapeutic promise of combining autophagy and MP inhibitors in the clinic.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • Cancer Research
  • Cell Biology

The emergence of cancer from diverse normal tissues has long been rationalized to represent a common set of fundamental processes. However, these processes are not fully defined. Here, we show that forced expression of glucose-6-phosphate dehydrogenase (G6PD) affords immortalized mouse and human cells anchorage-independent growth in vitro and tumorigenicity in animals. Mechanistically, G6PD augments the NADPH pool by stimulating NAD+ kinase-mediated NADP+ biosynthesis in addition to converting NADP+ to NADPH, bolstering antioxidant defense. G6PD also increases nucleotide precursor levels through the production of ribose and NADPH, promoting cell proliferation. Supplementation of antioxidants or nucleosides suffices to convert immortalized mouse and human cells into a tumorigenic state, and supplementation of both is required when their overlapping metabolic consequences are minimized. These results suggest that normal cells have a limited capacity for redox balance and nucleotide synthesis, and overcoming this limit might represent a key aspect of oncogenic transformation.
Copyright © 2020 Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Genetics

Herpes simplex virus 1 (HSV-1) is a leading cause of infectious blindness, highlighting the need for effective vaccines. A single-cycle HSV-2 strain with the deletion of glycoprotein D, ΔgD-2, completely protected mice from HSV-1 and HSV-2 skin or vaginal disease and prevented latency following active or passive immunization in preclinical studies. The antibodies functioned primarily by activating Fc receptors to mediate antibody-dependent cellular cytotoxicity (ADCC). The ability of ADCC to protect the immune-privileged eye, however, may differ from skin or vaginal infections. Thus, the current studies were designed to compare active and passive immunization with ΔgD-2 versus an adjuvanted gD subunit vaccine (rgD-2) in a primary lethal ocular murine model. ΔgD-2 provided significantly greater protection than rgD-2 following a two-dose vaccine regimen, although both vaccines were protective compared to an uninfected cell lysate. However, only immune serum from ΔgD-2-vaccinated, but not rgD-2-vaccinated, mice provided significant protection against lethality in passive transfer studies. The significantly greater passive protection afforded by ΔgD-2 persisted after controlling for the total amount of HSV-specific IgG in the transferred serum. The antibodies elicited by rgD-2 had significantly higher neutralizing titers, whereas those elicited by ΔgD-2 had significantly more C1q binding and Fc gamma receptor activation, a surrogate for ADCC function. Together, the findings suggest ADCC is protective in the eye and that nonneutralizing antibodies elicited by ΔgD-2 provide greater protection than neutralizing antibodies elicited by rgD-2 against primary ocular HSV disease. The findings support advancement of vaccines, including ΔgD-2, that elicit polyfunctional antibody responses.IMPORTANCE Herpes simplex virus 1 is the leading cause of infectious corneal blindness in the United States and Europe. Developing vaccines to prevent ocular disease is challenging because the eye is a relatively immune-privileged site. In this study, we compared a single-cycle viral vaccine candidate, which is unique in that it elicits predominantly nonneutralizing antibodies that activate Fc receptors and bind complement, and a glycoprotein D subunit vaccine that elicits neutralizing but not Fc receptor-activating or complement-binding responses. Only the single-cycle vaccine provided both active and passive protection against a lethal ocular challenge. These findings greatly expand our understanding of the types of immune responses needed to protect the eye and will inform future prophylactic and therapeutic strategies.
Copyright © 2020 American Society for Microbiology.

  • Immunology and Microbiology
View this product on CiteAb