Product Citations: 4

It is important to find better treatments for diabetic nephropathy (DN), a debilitating renal complication. Targeting early features of DN, including renal extracellular matrix accumulation (ECM) and glomerular hypertrophy, can prevent disease progression. Here we show that a megacluster of nearly 40 microRNAs and their host long non-coding RNA transcript (lnc-MGC) are coordinately increased in the glomeruli of mouse models of DN, and mesangial cells treated with transforming growth factor-β1 (TGF- β1) or high glucose. Lnc-MGC is regulated by an endoplasmic reticulum (ER) stress-related transcription factor, CHOP. Cluster microRNAs and lnc-MGC are decreased in diabetic Chop-/- mice that showed protection from DN. Target genes of megacluster microRNAs have functions related to protein synthesis and ER stress. A chemically modified oligonucleotide targeting lnc-MGC inhibits cluster microRNAs, glomerular ECM and hypertrophy in diabetic mice. Relevance to human DN is also demonstrated. These results demonstrate the translational implications of targeting lnc-MGC for controlling DN progression.

  • WB
  • Cell Biology

VMD2 promoter requires two proximal E-box sites for its activity in vivo and is regulated by the MITF-TFE family.

In The Journal of Biological Chemistry on 19 January 2007 by Esumi, N., Kachi, S., et al.

The retinal pigment epithelium (RPE) is crucial for the function and survival of retinal photoreceptors. VMD2 encodes bestrophin, an oligomeric chloride channel that is preferentially expressed in the RPE and, when mutated, causes Best macular dystrophy. Previously, we defined the VMD2 upstream region from -253 to +38 bp as being sufficient to direct RPE-specific expression in the eye, and we suggested microphthalmia-associated transcription factor (MITF) as a possible positive regulator. Here we show that in transgenic mice the -154 to +38 bp region is sufficient for RPE expression, and mutation of two E-boxes, 1 and 2, within this region leads to loss of promoter activity. A yeast one-hybrid screen using bait containing E-box 1 identified clones encoding MITF, TFE3, and TFEB, and chromatin immunoprecipitation with antibodies against these proteins enriched the VMD2 proximal promoter. Analysis using in vivo electroporation with constructs containing mutation of each E-box indicated that expression in native RPE requires both E-boxes, yet in vitro DNA binding studies suggested that MITF binds well to E-box 1 but only minimally to E-box 2. MITF knockdown by small interfering RNA (siRNA) in cell culture revealed a strong correlation between MITF and VMD2 mRNA levels. Sequential transfection of a luciferase construct with expression vectors following MITF siRNA revealed that TFE3 and TFEB can also transactivate the VMD2 promoter. Taken together, we suggest that VMD2 is regulated by the MITF-TFE family through two E-boxes, with E-box 1 required for a direct interaction of MITF-TFE factors and E-box 2 for binding of the as yet unidentified factor(s).

  • Biochemistry and Molecular biology

Translocations of the genes encoding the related transcription factors TFE3 and TFEB are almost exclusively associated with a rare juvenile subset of renal cell carcinoma and lead to overexpression of TFE3 or TFEB protein sequences. A better understanding of how deregulated TFE3 and TFEB contribute to the transformation process requires elucidating more of the normal cellular processes in which they participate. Here we identify TFE3 and TFEB as cell type-specific leukemia inhibitory factor-responsive activators of E-cadherin. Overexpression of TFE3 or TFEB in 3T3 cells activated endogenous and reporter E-cadherin expression. Conversely, endogenous TFE3 and/or TFEB was required for endogenous E-cadherin expression in primary mouse embryonic fibroblasts and human embryonic kidney cells. Chromatin precipitation analyses and E-cadherin promoter reporter gene assays revealed that E-cadherin induction by TFE3 or TFEB was primarily or exclusively direct and mitogen-activated protein kinase-dependent in those cell types. In mouse embryonic fibroblasts, TFE3 and TFEB activation of E-cadherin was responsive to leukemia inhibitory factor. In 3T3 cells, TFE3 and TFEB expression also induced expression of Wilms' tumor-1, another E-cadherin activator. In contrast, E-cadherin expression in model mouse and canine renal epithelial cell lines was indifferent to inhibition of endogenous TFE3 and/or TFEB and was reduced by TFE3 or TFEB overexpression. These results reveal new cell type-specific activities of TFE3 and TFEB which may be affected by their mutation.

  • Biochemistry and Molecular biology
  • Cancer Research

Combinatorial gene control involving E2F and E Box family members.

In The EMBO Journal on 24 March 2004 by Giangrande, P. H., Zhu, W., et al.

Various studies point to the potential role of combinatorial action of transcription factors as a mechanism to achieve the complexity of eukaryotic gene control with a finite number of regulatory proteins. Our previous work has focused on interactions involving the E2F family of transcription factors as an example of combinatorial gene control, leading to the identification of TFE3 and YY1 as transcription partners for several E2F proteins. We now show that additional E2F target genes share a common promoter architecture and are also regulated by the combined action of TFE3 and E2F3. In contrast, the thymidine kinase (TK-1) promoter is also regulated by E2F3 but independent of TFE3. Other promoters exhibit distinct specificity in the interaction with E2F proteins that includes a role for E2F1 but not E2F3, examples where both E2F1 and E2F3 are seen to interact, and promoters that are regulated by TFE3 but independent of an E2F. We propose that these examples of combinatorial interactions involving E2F proteins provide a basis for the specificity of transcription control in the Rb/E2F pathway.

View this product on CiteAb