Product Citations: 5

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one of the top infectious killers in the world. The only licensed vaccine against TB, Bacille Calmette-Guérin (BCG), provides variable protection against pulmonary TB, especially in adults. Hence, novel TB vaccine approaches are urgently needed. Both Th1 and Th17 responses are necessary for protection against TB, yet effective adjuvants and vaccine delivery systems for inducing robust Th1 and Th17 immunity are lacking. Herein we describe a synthetic Mincle agonist, UM-1098, and a silica nanoparticle delivery system that drives Th1/Th17 responses to Mtb antigens. Stimulation of human peripheral blood mononuclear cells (hPBMCs) with UM-1098 induced high levels of Th17 polarizing cytokines IL-6, IL-1β, IL-23 as well as IL-12p70, IL-4 and TNF-α in vitro. PBMCs from both C57BL/6 and BALB/c mice responded with a similar cytokine pattern in vitro and in vivo. Importantly, intramuscular (I.M.) vaccination with UM-1098-adjuvanted TB antigen M72 resulted in significantly higher antigen-specific IFN-γ and IL-17A levels in C57BL/6 wt mice than Mincle KO mice. Vaccination of C57BL/6 wt mice with immunodominant Mtb antigens ESAT6/Ag85B or M72 resulted in predominantly Th1 and Th17 responses and induced antigen-specific serum antibodies. Notably, in a virulent Mtb challenge model, vaccination with UM-1098 adjuvanted ESAT6/Ag85B or M72 significantly reduced lung bacterial burden when compared with unvaccinated mice and protection occurred in the absence of pulmonary inflammation. These data demonstrate that the synthetic Mincle agonist UM-1098 induces strong Th1 and Th17 immunity after vaccination with Mtb antigens and provides protection against Mtb infection in mice.
© 2024. The Author(s).

  • Mus musculus (House mouse)

Eosinophils protect against pulmonary hypertension through 14-HDHA and 17-HDHA.

In The European Respiratory Journal on 1 March 2023 by Shu, T., Zhang, J., et al.

Pulmonary hypertension (PH) is a life-threatening disease featuring pulmonary vessel remodelling and perivascular inflammation. The effect, if any, of eosinophils (EOS) on the development of PH remains unclear.
EOS infiltration and chemotaxis were investigated in peripheral blood and lung tissues from pulmonary arterial hypertension (PAH) patients without allergic history and from sugen/hypoxia-induced PH mice. The role of EOS deficiency in PH development was investigated using GATA1-deletion (ΔdblGATA) mice and anti-interleukin 5 antibody-treated mice and rats. Ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) was conducted to identify the critical oxylipin molecule(s) produced by EOS. Culture supernatants and lysates of EOS were collected to explore the mechanisms in co-culture cell experiments.
There was a lower percentage of EOS in peripheral blood but higher infiltration in lung tissues from PAH patients and PH mice. PAH/PH lungs showed increased EOS-related chemokine expression, mainly C-C motif chemokine ligand 11 derived from adventitial fibroblasts. EOS deficiency aggravated PH in rodents, accompanied by increased neutrophil and monocyte/macrophage infiltration. EOS highly expressed arachidonate 15-lipoxygenase (ALOX15). 14-hydroxy docosahexaenoic acid (14-HDHA) and 17-HDHA were critical downstream oxylipins produced by EOS, which showed anti-inflammatory effects on recruitment of neutrophils and monocytes/macrophages through N-formyl peptide receptor 2. They also repressed pulmonary artery smooth muscle cell (PASMC) proliferation by activating peroxisome proliferator-activated receptor γ and blunting Stat3 phosphorylation.
In PH development without external stimuli, peripheral blood exhibits a low EOS level. EOS play a protective role by suppressing perivascular inflammation and maintaining PASMC homeostasis via 14/17-HDHA.
Copyright ©The authors 2023.

  • Mus musculus (House mouse)
  • Cardiovascular biology

Most licensed seasonal influenza vaccines are non-adjuvanted and rely primarily on vaccine-induced antibody titers for protection. As such, seasonal antigenic drift and suboptimal vaccine strain selection often results in reduced vaccine efficacy. Further, seasonal H3N2 influenza vaccines demonstrate poor efficacy compared to H1N1 and influenza type B vaccines. New vaccines, adjuvants, or delivery technologies that can induce broader or cross-seasonal protection against drifted influenza virus strains, likely through induction of protective T cell responses, are urgently needed. Here, we report novel lipidated TLR7/8 ligands that act as strong adjuvants to promote influenza-virus specific Th1-and Th17-polarized T cell responses and humoral responses in mice with no observable toxicity. Further, the adjuvanted influenza vaccine provided protection against a heterologous H3N2 influenza challenge in mice. These responses were further enhanced when combined with a synthetic TLR4 ligand adjuvant. Despite differences between human and mouse TLR7/8, these novel lipidated imidazoquinolines induced the production of cytokines required to polarize a Th1 and Th17 immune response in human PBMCs providing additional support for further development of these compounds as novel adjuvants for the induction of broad supra-seasonal protection from influenza virus.
Copyright © 2020 Miller, Cybulski, Whitacre, Bess, Livesay, Walsh, Burkhart, Bazin and Evans.

  • Immunology and Microbiology

Lineage(-)Sca1+c-Kit(-)CD25+ cells are IL-33-responsive type 2 innate cells in the mouse bone marrow.

In The Journal of Immunology on 1 December 2011 by Brickshawana, A., Shapiro, V. S., et al.

IL-33 promotes type 2 immune responses, both protective and pathogenic. Recently, targets of IL-33, including several newly discovered type 2 innate cells, have been characterized in the periphery. In this study, we report that bone marrow cells from wild-type C57BL/6 mice responded with IL-5 and IL-13 production when cultured with IL-33. IL-33 cultures of bone marrow cells from Rag1 KO and Kit(W-sh/W-sh) mice also responded similarly; hence, eliminating the possible contributions of T, B, and mast cells. Rather, intracellular staining revealed that the IL-5- and IL-13-positive cells display a marker profile consistent with the Lineage(-)Sca-1(+)c-Kit(-)CD25(+) (LSK(-)CD25(+)) cells, a bone marrow cell population of previously unknown function. Freshly isolated LSK(-)CD25(+) cells uniformly express ST2, the IL-33 receptor. In addition, culture of sorted LSK(-)CD25(+) cells showed that they indeed produce IL-5 and IL-13 when cultured with IL-33 plus IL-2 and IL-33 plus IL-7. Furthermore, i.p. injections of IL-33 or IL-25 into mice induced LSK(-)CD25(+) cells to expand, in both size and frequency, and to upregulate ST2 and α(4)β(7) integrin, a mucosal homing marker. Thus, we identify the enigmatic bone marrow LSK(-)CD25(+) cells as IL-33 responsive, both in vitro and in vivo, with attributes similar to other type 2 innate cells described in peripheral tissues.

  • Immunology and Microbiology

Antigen-induced increases in pulmonary mast cell progenitor numbers depend on IL-9 and CD1d-restricted NKT cells.

In The Journal of Immunology on 15 October 2009 by Jones, T. G., Hallgren, J., et al.

Pulmonary mast cell progenitor (MCp) numbers increase dramatically in sensitized and aerosolized Ag-challenged mice. This increase depends on CD4(+) T cells, as no MCp increase occurs in the lungs of sensitized wild-type (WT) mice after mAb depletion of CD4(+) but not CD8(+) cells before aerosol Ag challenge. Neither the genetic absence of IL-4, IL-4Ralpha chain, STAT-6, IFN-gamma, or IL-12p40 nor mAb blockade of IFN-gamma, IL-3, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17A, IL-12p40, or IL-12p40Rbeta1 before Ag challenge in WT mice reduces the pulmonary MCp increase. However, sensitized and Ag-challenged IL-9-deficient mice and sensitized WT mice given mAb to IL-9 just before Ag challenge show significant reductions in elicited lung MCp/10(6) mononuclear cells of 47 and 66%, respectively. CD1d-deficient mice and WT mice receiving anti-CD1d before Ag challenge also show significant reductions of 65 and 59%, respectively, in elicited lung MCp/10(6) mononuclear cells, revealing an additional requirement for MCp recruitment. However, in Jalpha18-deficient mice, which lack only type 1 or invariant NKT cells, the increase in the numbers of lung MCp with Ag challenge was intact, indicating that their recruitment must be mediated by type 2 NKT cells. Furthermore, anti-CD1d treatment of IL-9-deficient mice or anti-IL-9 treatment of CD1d-deficient mice does not further reduce the significant partial impairment of MCp recruitment occurring with a single deficiency. These findings implicate type 2 NKT cells and IL-9 as central regulators that function in the same pathway mediating the Ag-induced increase in numbers of pulmonary MCp.

  • Mus musculus (House mouse)
  • Cardiovascular biology
  • Immunology and Microbiology
View this product on CiteAb