Product Citations: 62

1 image found

Inhibition of Atg7 in intestinal epithelial cells drives resistance against Citrobacter rodentium.

In Cell Death & Disease on 19 February 2025 by Cune, D., Pitasi, C. L., et al.

Autophagy, a cytoprotective mechanism in intestinal epithelial cells, plays a crucial role in maintaining intestinal homeostasis. Beyond its cell-autonomous effects, the significance of autophagy in these cells is increasingly acknowledged in the dynamic interplay between the microbiota and the immune response. In the context of colon cancer, intestinal epithelium disruption of autophagy has been identified as a critical factor influencing tumor development. This disruption modulates the composition of the gut microbiota, eliciting an anti-tumoral immune response. Here, we report that Atg7 deficiency in intestinal epithelial cells shapes the intestinal microbiota leading to an associated limitation of colitis induced by Citrobacter rodentium infection. Mice with an inducible, intestinal epithelial-cell-specific deletion of the autophagy gene, Atg7, exhibited enhanced clearance of C. rodentium, mitigated hyperplasia, and reduced pathogen-induced goblet cell loss. This protective effect is linked to a higher proportion of neutrophils and phagocytic cells in the early phase of infection. At later stages, it is associated with the downregulation of pro-inflammatory pathways and an increase in Th17 and Treg responses-immune responses known for their protective roles against C. rodentium infection, modulated by specific gut microbiota. Fecal microbiota transplantation and antibiotic treatment approaches revealed that the Atg7-deficiency-shapped microbiota, especially Gram-positive bacteria, playing a central role in driving resistance to C. rodentium infection. In summary, our findings highlight that inhibiting autophagy in intestinal epithelial cells contributes to maintaining homeostasis and preventing detrimental intestinal inflammation through microbiota-mediated colonization resistance against C. rodentium. This underscores the central role played by autophagy in shaping the microbiota in promoting immune-mediated resistance against enteropathogens.
© 2025. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cell Biology

ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy.

In Nature Communications on 19 May 2023 by Xiao, X., Shi, J., et al.

The programmed cell death protein 1 (PD-1) is an inhibitory receptor on T cells and plays an important role in promoting cancer immune evasion. While ubiquitin E3 ligases regulating PD-1 stability have been reported, deubiquitinases governing PD-1 homeostasis to modulate tumor immunotherapy remain unknown. Here, we identify the ubiquitin-specific protease 5 (USP5) as a bona fide deubiquitinase for PD-1. Mechanistically, USP5 interacts with PD-1, leading to deubiquitination and stabilization of PD-1. Moreover, extracellular signal-regulated kinase (ERK) phosphorylates PD-1 at Thr234 and promotes PD-1 interaction with USP5. Conditional knockout of Usp5 in T cells increases the production of effector cytokines and retards tumor growth in mice. USP5 inhibition in combination with Trametinib or anti-CTLA-4 has an additive effect on suppressing tumor growth in mice. Together, this study describes a molecular mechanism of ERK/USP5-mediated regulation of PD-1 and identifies potential combinatorial therapeutic strategies for enhancing anti-tumor efficacy.
© 2023. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Chronic CD27-CD70 costimulation promotes type 1-specific polarization of effector Tregs.

In Frontiers in Immunology on 31 March 2023 by Bowakim-Anta, N., Acolty, V., et al.

Most T lymphocytes, including regulatory T cells, express the CD27 costimulatory receptor in steady state conditions. There is evidence that CD27 engagement on conventional T lymphocytes favors the development of Th1 and cytotoxic responses in mice and humans, but the impact on the regulatory lineage is unknown.
In this report, we examined the effect of constitutive CD27 engagement on both regulatory and conventional CD4+ T cells in vivo, in the absence of intentional antigenic stimulation.
Our data show that both T cell subsets polarize into type 1 Tconvs or Tregs, characterized by cell activation, cytokine production, response to IFN-γ and CXCR3-dependent migration to inflammatory sites. Transfer experiments suggest that CD27 engagement triggers Treg activation in a cell autonomous fashion.
We conclude that CD27 may regulate the development of Th1 immunity in peripheral tissues as well as the subsequent switch of the effector response into long-term memory.
Copyright © 2023 Bowakim-Anta, Acolty, Azouz, Yagita, Leo, Goriely, Oldenhove and Moser.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Impaired Treg-DC interactions contribute to autoimmunity in leukocyte adhesion deficiency type 1.

In JCI Insight on 22 December 2022 by Klaus, T., Wilson, A. S., et al.

Leukocyte adhesion deficiency type 1 (LAD-1) is a rare disease resulting from mutations in the gene encoding for the common β-chain of the β2-integrin family (CD18). The most prominent clinical symptoms are profound leukocytosis and high susceptibility to infections. Patients with LAD-1 are prone to develop autoimmune diseases, but the molecular and cellular mechanisms that result in coexisting immunodeficiency and autoimmunity are still unresolved. CD4+FOXP3+ Treg are known for their essential role in preventing autoimmunity. To understand the role of Treg in LAD-1 development and manifestation of autoimmunity, we generated mice specifically lacking CD18 on Treg (CD18Foxp3), resulting in defective LFA-1 expression. Here, we demonstrate a crucial role of LFA-1 on Treg to maintain immune homeostasis by modifying T cell-DC interactions and CD4+ T cell activation. Treg-specific CD18 deletion did not impair Treg migration into extralymphatic organs, but it resulted in shorter interactions of Treg with DC. In vivo, CD18Foxp3 mice developed spontaneous hyperplasia in lymphatic organs and diffuse inflammation of the skin and in multiple internal organs. Thus, LFA-1 on Treg is required for the maintenance of immune homeostasis.

  • Mus musculus (House mouse)
  • Immunology and Microbiology

Axin1 Protects Colon Carcinogenesis by an Immune-Mediated Effect.

In Cellular and Molecular Gastroenterology and Hepatology on 11 November 2022 by Sanson, R., Lazzara, S. L., et al.

Axin1 is a negative regulator of wingless-type MMTV integration site family, member 1 (Wnt)/β-catenin signaling with tumor-suppressor function. The Wnt pathway has a critical role in the intestine, both during homeostasis and cancer, but the role of Axin1 remains elusive.
We assessed the role of Axin1 in normal intestinal homeostasis, with control, epithelial-specific, Axin1-knockout mice (Axin1ΔIEC) and Axin2-knockout mice. We evaluated the tumor-suppressor function of Axin1 during chemically induced colorectal tumorigenesis and dextran sulfate sodium-induced colitis, and performed comparative gene expression profiling by whole-genome RNA sequencing. The clinical relevance of the Axin1-dependent gene expression signature then was tested in a database of 2239 clinical colorectal cancer (CRC) samples.
We found that Axin1 was dispensable for normal intestinal homeostasis and redundant with Axin2 for Wnt pathway down-regulation. Axin1 deficiency in intestinal epithelial cells rendered mice more susceptible to chemically induced colon carcinogenesis, but reduced dextran sulfate sodium-induced colitis by attenuating the induction of a proinflammatory program. RNA-seq analyses identified an interferon γ/T-helper1 immune program controlled by Axin1 that enhances the inflammatory response and protects against CRC. The Axin1-dependent gene expression signature was applied to human CRC samples and identified a group of patients with potential vulnerability to immune checkpoint blockade therapies.
Our study establishes, in vivo, that Axin1 has redundant function with Axin2 for Wnt down-regulation and infers a new role for Axin1. Physiologically, Axin1 stimulates gut inflammation via an interferon γ/Th1 program that prevents tumor growth. Linked to its T-cell-mediated effect, the colonic Axin1 signature offers therapeutic perspectives for CRC.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
View this product on CiteAb