Product Citations: 5

Machine learning identifies molecular regulators and therapeutics for targeting SARS-CoV2-induced cytokine release.

In Molecular Systems Biology on 1 September 2021 by Chan, M., Vijay, S., et al.

Although 15-20% of COVID-19 patients experience hyper-inflammation induced by massive cytokine production, cellular triggers of this process and strategies to target them remain poorly understood. Here, we show that the N-terminal domain (NTD) of the SARS-CoV-2 spike protein substantially induces multiple inflammatory molecules in myeloid cells and human PBMCs. Using a combination of phenotypic screening with machine learning-based modeling, we identified and experimentally validated several protein kinases, including JAK1, EPHA7, IRAK1, MAPK12, and MAP3K8, as essential downstream mediators of NTD-induced cytokine production, implicating the role of multiple signaling pathways in cytokine release. Further, we found several FDA-approved drugs, including ponatinib, and cobimetinib as potent inhibitors of the NTD-mediated cytokine release. Treatment with ponatinib outperforms other drugs, including dexamethasone and baricitinib, inhibiting all cytokines in response to the NTD from SARS-CoV-2 and emerging variants. Finally, ponatinib treatment inhibits lipopolysaccharide-mediated cytokine release in myeloid cells in vitro and lung inflammation mouse model. Together, we propose that agents targeting multiple kinases required for SARS-CoV-2-mediated cytokine release, such as ponatinib, may represent an attractive therapeutic option for treating moderate to severe COVID-19.
©2021 The Authors. Published under the terms of the CC BY 4.0 license.

  • Biochemistry and Molecular biology
  • COVID-19

CD56+ cells have been recognized as being involved in bridging the innate and acquired immune systems. Herein, we assessed the effect of two major classes of immunostimulatory oligonucleotides (ODNs), PyNTTTTGT and CpG, on CD56+ cells. Incubation of human peripheral blood mononuclear cells (hPBMC) with some of these ODNs led to secretion of significant amounts of interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α) and granulocyte/monocyte colony-stimulating factor (GM-CSF), but only if interleukin 2 (IL2) was present. IMT504, the prototype of the PyNTTTTGT ODN class, was the most active. GM-CSF secretion was very efficient when non-CpG ODNs with high T content and PyNTTTTGT motifs lacking CpGs were used. On the other hand, CpG ODNs and IFNα inhibited this GM-CSF secretion. Selective cell type removal from hPBMC indicated that CD56+ cells were responsible for GM-CSF secretion and that plasmacytoid dendritic cells (PDCs) regulate this process. In addition, PyNTTTTGT ODNs inhibited the IFNα secretion induced by CpG ODNs in PDCs by interference with the TLR9 signaling pathway. Since IFNα is essential for CD56+ stimulation by CpG ODNs, there is a reciprocal interference of CpG and PyNTTTTGT ODNs when acting on this cell population. This suggests that these synthetic ODNs mimic different natural alarm signals for activation of the immune system.

  • ELISA
  • Homo sapiens (Human)

Omalizumab reverses the phenotypic and functional effects of IgE-enhanced Fc epsilonRI on human skin mast cells.

In The Journal of Immunology on 15 July 2007 by Gomez, G., Jogie-Brahim, S., et al.

The dramatic effects of the anti-IgE mAb omalizumab to lower free IgE levels and Fc epsilonRI levels on basophils contrast with more modest clinical effects. Accordingly, whether IgE modulates Fc epsilonRI levels and Fc epsilonRI-dependent mediator release in vitro on human skin mast cells (MC(TC) type) that had matured in vivo is of interest. IgE reversibly enhanced Fc epsilonRI levels on MC(TC) cells in a dose- and time-dependent manner (up-regulation t(1/2) of 4-5 days with 1-3 microg/ml IgE), without affecting cell proliferation. A molar ratio of omalizumab to IgE of 0.9 at baseline prevented receptor up-regulation by 50%, whereas adding omalizumab to MC(TC) cells already with IgE-enhanced Fc epsilonRI levels at molar ratios of 5, 12.5, and 31 reduced Fc epsilonRI levels to baseline with respective t(1/2) values of 8.7, 6.3, and 4.8 days. MC(TC) cells with IgE-enhanced Fc epsilonRI levels were more sensitive to stimulation with a low dose of anti-Fc epsilonRI mAb in terms of degranulation and production of PGD(2), GM-CSF, IL-6, IL-13, and TNF-alpha. Reducing up-regulated Fc epsilonRI levels with omalizumab also reduced mediator release to a low dose of anti-Fc epsilonRI mAb to baseline by 3-4 wk. Thus, reducing free IgE should decrease the hypersensitivity of allergic individuals to low naturally occurring concentrations of allergens.

  • Immunology and Microbiology

Mechanisms of serum potentiation of GM-CSF production by human airway smooth muscle cells.

In American Journal of Physiology - Lung Cellular and Molecular Physiology on 1 November 2004 by Lalor, D. J., Truong, B., et al.

Inflammation and vascular leakage are prevalent in asthma. This study aimed to elucidate the mechanisms involved in serum potentiation of cytokine-induced granulocyte macrophage colony stimulating factor (GM-CSF) production by human airway smooth muscle cells and to identify possible factors responsible. Serum-deprived cells at low density were stimulated with TNF-alpha and IL-1beta for 24 h. Human AB serum (10%), inhibitors of RNA and protein synthesis or specific signaling molecules, or known smooth muscle mitogens were then added for 24 h. Culture supernatants were analyzed for GM-CSF levels, and cells were harvested to assess viability, cell cycle progression, GM-CSF-specific mRNA content, and p38 phosphorylation. Serum potentiated GM-CSF release when added before, together with (maximal), or after the cytokines. The potentiation involved both new GM-CSF-specific mRNA production and protein synthesis. The mitogens IGF, PDGF, and thrombin all potentiated GM-CSF release, and neutralizing antibodies for EGF, IGF, and PDGF reduced the serum potentiation. Inhibitor studies ruled as unlikely the involvement of p70(S6kinase) and the MAPK p42/p44, two signaling pathways implicated in proliferation, and the involvement of the MAPK JNK, while establishing roles for p38 MAPK and NF-kappaB in the potentiation of GM-CSF release. Detection of significant p38 phosphorylation in response to serum stimulation, through Western blotting, further demonstrated the involvement of p38. These studies have provided evidence to support p38 being targeted to interrupt the cycle of inflammation, vascular leakage and cytokine production in asthma.

  • Endocrinology and Physiology

Staphylococcus aureus and Salmonella spp. are common causes of bone diseases; however, the immune response during such infections is not well understood. Colony-stimulating factors (CSF) have a profound influence on osteoclastogenesis, as well as the development of immune responses following infection. Therefore, we questioned whether interaction of osteoblasts with two very different bacterial pathogens could affect CSF expression by these cells. Cultured mouse and human osteoblasts were exposed to various numbers of S. aureus or Salmonella dublin bacteria, and a comprehensive analysis of granulocyte-macrophage (GM)-CSF, granulocyte (G)-CSF, macrophage (M)-CSF, and interleukin-3 (IL-3) mRNA expression and cytokine secretion was performed. Expression of M-CSF and IL-3 mRNAs by mouse osteoblasts was constitutive and did not increase significantly following bacterial exposure. In contrast, GM-CSF and G-CSF mRNA expression by mouse osteoblasts was dramatically upregulated following interaction with either viable S. aureus or Salmonella. This increased mRNA expression also translated into high levels of GM-CSF and G-CSF secretion by mouse and human osteoblasts following bacterial exposure. Viable S. aureus and Salmonella induced maximal levels of CSF mRNA expression and cytokine secretion compared to UV-killed bacteria. Furthermore, GM-CSF and G-CSF mRNA expression could be induced in unexposed osteoblasts separated by a permeable Transwell membrane from bacterially exposed osteoblasts. M-CSF secretion was increased in cultures of exposed human osteoblasts but not in exposed mouse osteoblast cultures. Together, these studies are the first to define CSF expression and suggest that, following bacterial exposure, osteoblasts may influence osteoclastogenesis, as well as the development of an immune response, via the production of these cytokines.

  • Immunology and Microbiology
View this product on CiteAb