Product Citations: 29

CD37 is a safe chimeric antigen receptor target to treat acute myeloid leukemia.

In Cell Reports Medicine on 18 June 2024 by Caulier, B., Joaquina, S., et al.

Acute myeloid leukemia (AML) is characterized by the accumulation of immature myeloid cells in the bone marrow and the peripheral blood. Nearly half of the AML patients relapse after standard induction therapy, and new forms of therapy are urgently needed. Chimeric antigen receptor (CAR) T therapy has so far not been successful in AML due to lack of efficacy and safety. Indeed, the most attractive antigen targets are stem cell markers such as CD33 or CD123. We demonstrate that CD37, a mature B cell marker, is expressed in AML samples, and its presence correlates with the European LeukemiaNet (ELN) 2017 risk stratification. We repurpose the anti-lymphoma CD37CAR for the treatment of AML and show that CD37CAR T cells specifically kill AML cells, secrete proinflammatory cytokines, and control cancer progression in vivo. Importantly, CD37CAR T cells display no toxicity toward hematopoietic stem cells. Thus, CD37 is a promising and safe CAR T cell AML target.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Control of acute myeloid leukemia by a trifunctional NKp46-CD16a-NK cell engager targeting CD123.

In Nature Biotechnology on 1 September 2023 by Gauthier, L., Virone-Oddos, A., et al.

CD123, the alpha chain of the IL-3 receptor, is an attractive target for acute myeloid leukemia (AML) treatment. However, cytotoxic antibodies or T cell engagers targeting CD123 had insufficient efficacy or safety in clinical trials. We show that expression of CD64, the high-affinity receptor for human IgG, on AML blasts confers resistance to anti-CD123 antibody-dependent cell cytotoxicity (ADCC) in vitro. We engineer a trifunctional natural killer cell engager (NKCE) that targets CD123 on AML blasts and NKp46 and CD16a on NK cells (CD123-NKCE). CD123-NKCE has potent antitumor activity against primary AML blasts regardless of CD64 expression and induces NK cell activation and cytokine secretion only in the presence of AML cells. Its antitumor activity in a mouse CD123+ tumor model exceeds that of the benchmark ADCC-enhanced antibody. In nonhuman primates, it had prolonged pharmacodynamic effects, depleting CD123+ cells for more than 10 days with no signs of toxicity and very low inflammatory cytokine induction over a large dose range. These results support clinical development of CD123-NKCE.
© 2023. The Author(s).

  • Cancer Research

Disruption of the MYC Superenhancer Complex by Dual Targeting of FLT3 and LSD1 in Acute Myeloid Leukemia.

In Molecular Cancer Research on 5 July 2023 by Yashar, W. M., Smith, B. M., et al.

Mutations in Fms-like tyrosine kinase 3 (FLT3) are common drivers in acute myeloid leukemia (AML) yet FLT3 inhibitors only provide modest clinical benefit. Prior work has shown that inhibitors of lysine-specific demethylase 1 (LSD1) enhance kinase inhibitor activity in AML. Here we show that combined LSD1 and FLT3 inhibition induces synergistic cell death in FLT3-mutant AML. Multi-omic profiling revealed that the drug combination disrupts STAT5, LSD1, and GFI1 binding at the MYC blood superenhancer, suppressing superenhancer accessibility as well as MYC expression and activity. The drug combination simultaneously results in the accumulation of repressive H3K9me1 methylation, an LSD1 substrate, at MYC target genes. We validated these findings in 72 primary AML samples with the nearly every sample demonstrating synergistic responses to the drug combination. Collectively, these studies reveal how epigenetic therapies augment the activity of kinase inhibitors in FLT3-ITD (internal tandem duplication) AML.
This work establishes the synergistic efficacy of combined FLT3 and LSD1 inhibition in FLT3-ITD AML by disrupting STAT5 and GFI1 binding at the MYC blood-specific superenhancer complex.
©2023 American Association for Cancer Research.

  • Homo sapiens (Human)
  • Cancer Research

Studies of the high-grade serous ovarian cancer (HGSOC) tumor microenvironment, the most lethal gynecological cancer, aim to enhance the efficiency of established therapies. Cell motility is an important process of anti-tumor response. Using ex vivo human and mouse HGSOC tumor slices combined with time-lapse imaging, we assessed the motility of CD8+ T and myeloid cells. We developed a semi-supervised analysis of cell movements, identifying four cell behaviors: migrating, long migrating, static, and wobbling. Tumor slices were maintained 24h ex vivo, retaining viability and cell movements. Ex vivo treatments with lipopolysaccharide altered CD8+ T and myeloid cell behavior. In vivo chemotherapy reduced ex vivo cell movements in human and mouse tumors and differentially affected CD8+ T and myeloid cells in chemo-sensitive and chemo-resistant mouse models. Ex vivo tumor slices can extend in vivo mouse studies to human, providing a stepping stone to translate mouse cancer studies to clinical trials.
© 2023 The Authors.

  • Cancer Research
  • Immunology and Microbiology

Paediatric ambiguous lineage leukaemia with monocytic differentiation at diagnosis: case series and review of literature.

In British Journal of Haematology on 1 February 2022 by Tandon, S., Visser, R., et al.

  • Cardiovascular biology
View this product on CiteAb