Product Citations: 4

Metabolic inflammation is associated with increased expression of saturated free fatty acids, proinflammatory cytokines, chemokines, and adipose oxidative stress. Macrophage inflammatory protein (MIP)-1α recruits the inflammatory cells such as monocytes, macrophages, and neutrophils in the adipose tissue; however, the mechanisms promoting the MIP-1α expression remain unclear. We hypothesized that MIP-1α co-induced by palmitate and tumor necrosis factor (TNF)-α in monocytic cells/macrophages could be further enhanced in the presence of reactive oxygen species (ROS)-mediated oxidative stress. To investigate this, THP-1 monocytic cells and primary human macrophages were co-stimulated with palmitate and TNF-α and mRNA and protein levels of MIP-1α were measured by using quantitative reverse transcription, polymerase chain reaction (qRT-PCR) and commercial enzyme-linked immunosorbent assays (ELISA), respectively. The cognate receptor of palmitate, toll-like receptor (TLR)-4, was blunted by genetic ablation, neutralization, and chemical inhibition. The involvement of TLR4-downstream pathways, interferon regulatory factor (IRF)-3 or myeloid differentiation (MyD)-88 factor, was determined using IRF3-siRNA or MyD88-deficient cells. Oxidative stress was induced in cells by hydrogen peroxide (H2O2) treatment and ROS induction was measured by dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. The data show that MIP-1α gene/protein expression was upregulated in cells co-stimulated with palmitate/TNF-α compared to those stimulated with either palmitate or TNF-α (P < 0.05). Further, TLR4-IRF3 pathway was implicated in the cooperative induction of MIP-1α in THP-1 cells, and this cooperativity between palmitate and TNF-α was clathrin-dependent and also required signaling through c-Jun and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Notably, ROS itself induced MIP-1α and could further promote MIP-1α secretion together with palmitate and TNF-α. In conclusion, palmitate and TNF-α co-induce MIP-1α in human monocytic cells via the TLR4-IRF3 pathway and signaling involving c-Jun/NF-κB. Importantly, oxidative stress leads to ROS-driven MIP-1α amplification, which may have significance for metabolic inflammation.

  • FC/FACS
  • Homo sapiens (Human)
  • Cell Biology

MIP-1α Induction by Palmitate in the Human Monocytic Cells Implicates TLR4 Signaling Mechanism.

In Cellular Physiology and Biochemistry on 1 March 2019 by Ahmad, R., Akhter, N., et al.

MIP-1α (macrophage inflammatory protein 1α)/CCL3 chemokine is associated with the adipose tissue inflammation in obesity. Both MIP-1α and free fatty acids are elevated in obesity/T2D. We asked if free fatty acid palmitate could modulate MIP1α expression in the human monocytic cells.
Human monocytic THP-1 cells and macrophages were stimulated with palmitate and TNF-α (positive control). MIP-1α expression was measured with real time RT-PCR, Flow Cytometry and ELISA. Signaling pathways were identified by using THP-1-XBlue™ cells, THP-1-XBlue™-defMyD cells, anti-TLR4 mAb and TLR4 siRNA.
Our data show that palmitate induced significant increase in MIP1α production in monocytic THP-1 cells/macrophages. MIP-1α induction was significantly suppressed when cells were treated with anti-TLR4 antibody prior stimulation with palmitate. Using TLR4 siRNA, we further demonstrate that palmitate-induced MIP-1α expression in monocytic cells requires TLR4. Moreover, THP1 cells defective in MyD88, a major adaptor protein involved in TLR4 signaling, were unable to induce MIP-1α production in response to palmitate. Palmitate-induced MIP-1α expression was suppressed by inhibition of MAPK, NFkB and PI3K signaling pathways. In addition, palmitate-induced NF-κB/AP-1 activation was observed while production of MIP-1α. However, this activation of NF-κB/AP-1 was abrogated in MyD88 deficient cells.
Overall, these results show that palmitate induces TLR4dependent MIP-1α expression requiring the MyD88 recruitment and activation of MAPK, NF-κB/AP-1 and PI3K signaling. It implies that the increased systemic levels of free fatty acid palmitate in obesity/T2D may contribute to metabolic inflammation through excessive production of MIP-1a.
© Copyright by the Author(s). Published by Cell Physiol Biochem Press.

  • FC/FACS

Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia.

In The Journal of Experimental Medicine on 1 June 2015 by Boisson, B., Laplantine, E., et al.

Inherited, complete deficiency of human HOIL-1, a component of the linear ubiquitination chain assembly complex (LUBAC), underlies autoinflammation, infections, and amylopectinosis. We report the clinical description and molecular analysis of a novel inherited disorder of the human LUBAC complex. A patient with multiorgan autoinflammation, combined immunodeficiency, subclinical amylopectinosis, and systemic lymphangiectasia, is homozygous for a mutation in HOIP, the gene encoding the catalytic component of LUBAC. The missense allele (L72P, in the PUB domain) is at least severely hypomorphic, as it impairs HOIP expression and destabilizes the whole LUBAC complex. Linear ubiquitination and NF-κB activation are impaired in the patient's fibroblasts stimulated by IL-1β or TNF. In contrast, the patient's monocytes respond to IL-1β more vigorously than control monocytes. However, the activation and differentiation of the patient's B cells are impaired in response to CD40 engagement. These cellular and clinical phenotypes largely overlap those of HOIL-1-deficient patients. Clinical differences between HOIL-1- and HOIP-mutated patients may result from differences between the mutations, the loci, or other factors. Our findings show that human HOIP is essential for the assembly and function of LUBAC and for various processes governing inflammation and immunity in both hematopoietic and nonhematopoietic cells.
© 2015 Boisson et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency.

In Nature Immunology on 1 December 2012 by Boisson, B., Laplantine, E., et al.

We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic autoinflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1 (RBCK1), a component of the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF-κB activation in response to interleukin 1β (IL-1β) was compromised in the patients' fibroblasts. By contrast, the patients' mononuclear leukocytes, particularly monocytes, were hyper-responsive to IL-1β. The consequences of human HOIL-1 and LUBAC deficiencies for IL-1β responses thus differed between cell types, consistent with the unique association of autoinflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF-κB-dependent IL-1β responses differently in different cell types.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb