Product Citations: 19

Novel artificial nerve transplantation of human iPSC-derived neurite bundles enhanced nerve regeneration after peripheral nerve injury.

In Inflammation and Regeneration on 13 February 2024 by Nishijima, T., Okuyama, K., et al.

Severe peripheral nerve damage always requires surgical treatment. Autologous nerve transplantation is a standard treatment, but it is not sufficient due to length limitations and extended surgical time. Even with the available artificial nerves, there is still large room for improvement in their therapeutic effects. Novel treatments for peripheral nerve injury are greatly expected.
Using a specialized microfluidic device, we generated artificial neurite bundles from human iPSC-derived motor and sensory nerve organoids. We developed a new technology to isolate cell-free neurite bundles from spheroids. Transplantation therapy was carried out for large nerve defects in rat sciatic nerve with novel artificial nerve conduit filled with lineally assembled sets of human neurite bundles. Quantitative comparisons were performed over time to search for the artificial nerve with the therapeutic effect, evaluating the recovery of motor and sensory functions and histological regeneration. In addition, a multidimensional unbiased gene expression profiling was carried out by using next-generation sequencing.
After transplantation, the neurite bundle-derived artificial nerves exerted significant therapeutic effects, both functionally and histologically. Remarkably, therapeutic efficacy was achieved without immunosuppression, even in xenotransplantation. Transplanted neurite bundles fully dissolved after several weeks, with no tumor formation or cell proliferation, confirming their biosafety. Posttransplant gene expression analysis highlighted the immune system's role in recovery.
The combination of newly developed microfluidic devices and iPSC technology enables the preparation of artificial nerves from organoid-derived neurite bundles in advance for future treatment of peripheral nerve injury patients. A promising, safe, and effective peripheral nerve treatment is now ready for clinical application.
© 2024. The Author(s).

  • Rattus norvegicus (Rat)
  • Neuroscience
  • Stem Cells and Developmental Biology

Sepsis, an infection with multiorgan dysfunction, is a serious burden on human health. Berberine (BBR), a bioactive component, has a protective effect on sepsis and the effect may be related to gut microbiota. However, studies on the role of BBR with gut microbiota in sepsis are lacking. Therefore, this study investigated the ameliorative effects and the underlying mechanisms of BBR on cecal ligature and puncture (CLP) rats.
This study has observed the effect of BBR on pathological injury, Inflammation, intestinal barrier function, gut microbiota, and metabolite change in CLP rats by Hematoxylin-eosin staining, enzyme-linked immunosorbent assays, flow cytometry, 16S rDNA, and metabolomics analyses.
The inhibition effects of BBR treatment on the histological damage of the lung, kidney, and ileum, the interleukin (IL)-1b, IL-6, IL-17A, and monocyte chemokine-1 levels in serum in CLP rats were proved. Also, the BBR inhibited the diamine-oxidase and fluorescein isothiocyanate-dextran 40 levels, suggesting it can improve intestinal barrier function disorders. The cluster of differentiation (CD) 4+, CD8+, and CD25+ Forkhead box protein P3 (Foxp3) + T lymphocytes in splenocytes were up-regulated by BBR, while the IL-17A+CD4+ cell level was decreased. The abundance of gut microbiota in CLP rats was significantly different from that of the sham and BBR treatment rats. The significantly changed metabolites in the serum mainly included carbohydrates, phenols, benzoic acids, alcohols, vitamins et al. Additionally, this study predicted that the biological mechanism of BBR to ameliorate sepsis involves glycolysis-, nucleotide-, and amino acid-related metabolic pathways.
This study proved the strong correlation between the improvement effect of BBR on sepsis and gut microbiota and analyzed by metabolomics that gut microbiota may improve CLP rats through metabolites, providing a scientific basis for BBR to improve sepsis and a new direction for the study of the biological mechanism.
Copyright © 2022 Pan, Huo, Shen, Dai, Bao, Ji and Zhang.

  • FC/FACS
  • Rattus norvegicus (Rat)

N-Acetylcysteine (NAC) demonstrates applications in the prevention of exacerbation of chronic obstructive pulmonary disease (COPD). COPD is often characterized by fibrosis of the small airways. This study aims at investigating the physiological mechanisms by which NAC might mediate the pulmonary fibrosis in COPD.
A total of 10 non-smokers without COPD and 10 smokers with COPD were recruited in this study, and COPD rat models were established. Cigarette smoke extract (CSE) cell models were constructed. The gain- or loss-of-function experiments were adopted to determine the expression of VWF and the extent of p38 MAPK phosphorylation, levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and immunoglobulins (IgG, IgM and IgA) in the serum of COPD rats and supernatant of alveolar epithelial cells and to detect cell invasion and migration and the ratio of CD3+, CD4+, CD8+ and CD4+/CD8+T lymphocytes.
Expression of VWF and the extent of p38 MAPK phosphorylation were increased in COPD. NAC inhibited p38 MAPK phosphorylation by reducing the VWF expression. NAC could inhibit cell migration and invasion, elevate E-cadherin expression, the ratio of CD3+, CD4+, CD8+ and CD4+/CD8+T lymphocytes, and levels of IgG, IgA, and IgM, and reduce N-cadherin expression and levels of IL-6 and TNF-α in CSE cells and serum of COPD rats. NAC promoted immune response and suppressed epithelial-mesenchymal transformation (EMT) to relieve COPD-induced pulmonary fibrosis in vitro and in vivo by inhibiting the VWF/p38 MAPK axis.
Collectively, NAC could ameliorate COPD-induced pulmonary fibrosis by promoting immune response and inhibiting EMT process via the VWF/p38 MAPK axis, therefore providing us with a potential therapeutic target for treating COPD.
© 2021. The Author(s).

  • FC/FACS
  • Rattus norvegicus (Rat)
  • Biochemistry and Molecular biology
  • Cardiovascular biology
  • Immunology and Microbiology

Immuno-hematologic parameters following rodent spinal cord contusion are negatively influenced by high-fat diet consumption.

In Journal of Neuroimmunology on 15 June 2020 by Person, J. M., Welch, B. A., et al.

Spinal cord injury (SCI) results in perturbations to the immune system leading to increased infection susceptibility. In parallel, the consumption of high-fat diets (HFD) leads to a chronic inflammation in circulation and body tissues. We investigated the impact of 16 weeks of HFD on chronically-injured rats. SCI rats under both chow and HFD showed peripheral leukocyte changes that include reduced percentages of total, helper and cytotoxic T, and natural killer cells. Expression of immune-related genes in the spleen and thymus reflected the impact of both chronic injury and diet. Changes to the immune system following SCI are adversely impacted by HFD consumption.
Copyright © 2020 Elsevier B.V. All rights reserved.

  • FC/FACS
  • Rattus norvegicus (Rat)
  • Immunology and Microbiology
  • Neuroscience

Altered immune system in offspring of rat maternal vertical sleeve gastrectomy.

In American Journal of Physiology - Regulatory, Integrative and Comparative Physiology on 1 December 2019 by Spann, R. A., Taylor, E. B., et al.

Obesity in women results in reduced fertility and increased complications during pregnancy. Vertical sleeve gastrectomy (VSG) effectively reduces weight, type 2 diabetes, and dyslipidemia, but is also associated with preterm and small-for-gestational age births. The mechanism by which VSG influences fetal development remains unknown. Here we hypothesize that previously reported immune changes during rat VSG pregnancy are reflected long term in the immune system of the offspring. Offspring of VSG and sham dams were evaluated at postnatal day (PND) 21 and PND60. At PND21, VSG pups have lower numbers of circulating B lymphocytes compared with sham pups (P < 0.05) and have lower transcription of lymphocyte marker Ptprc (P < 0.01) in the spleen, while other lymphocyte populations measured are not different. Total plasma IgG is higher (P < 0.01) and C-reactive protein is lower (P < 0.05) in VSG offspring compared with sham offspring at PND21. The central nervous system of VSG pups is also affected at PND21, having higher expression of Il1b mRNA (P < 0.05) and higher immunoreactivity of microglia marker, IBA1, in the hypothalamus. At PND60, the immune-hematological differences are not present; however, mRNA expression of Il1b is elevated (P < 0.001) in the spleen of VSG offspring along with markers of T cells. These data suggest that the immune system of VSG offspring is compromised early in life, but rebounds after weaning and may even become hyperactive. Future work is needed to determine whether the immune system of VSG offspring is capable of mounting a proper defense and whether other aspects of development are affected.

  • IA
  • Rattus norvegicus (Rat)
  • Endocrinology and Physiology
  • Immunology and Microbiology
View this product on CiteAb