Product Citations: 6

Reactive oxygen species have been involved in the pathogenesis of rheumatoid arthritis (RA). Our goal was to determine the effects of selectively scavenging superoxide (O2•-) and hydroxyl radicals with antioxidant nanoparticles, called poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), on the pathogenic functions of fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA) and on the progression of an animal model of RA. We used human FLS from patients with RA to determine PEG-HCC internalization and effects on FLS cytotoxicity, invasiveness, proliferation, and production of proteases. We used the pristane-induced arthritis (PIA) rat model of RA to assess the benefits of PEG-HCCs on reducing disease severity. PEG-HCCs were internalized by RA-FLS, reduced their intracellular O2•-, and reduced multiple measures of their pathogenicity in vitro, including proliferation and invasion. In PIA, PEG-HCCs caused a 65% reduction in disease severity, as measured by a standardized scoring system of paw inflammation and caused a significant reduction in bone and tissue damage, and circulating rheumatoid factor. PEG-HCCs did not induce lymphopenia during PIA. Our study demonstrated a role for O2•- and hydroxyl radicals in the pathogenesis of a rat model of RA and showed efficacy of PEG-HCCs in treating a rat model of RA.

  • FC/FACS
  • Rattus norvegicus (Rat)

KCa1.1 and Kv1.3 channels regulate the interactions between fibroblast-like synoviocytes and T lymphocytes during rheumatoid arthritis.

In Arthritis Research & Therapy on 7 January 2019 by Tanner, M. R., Pennington, M. W., et al.

Fibroblast-like synoviocytes (FLS) and CCR7- effector memory T (TEM) cells are two of the major cell types implicated in the progression of rheumatoid arthritis (RA). In particular, FLS become highly invasive, whereas TEM cells proliferate and secrete proinflammatory cytokines, during RA. FLS and T cells may also interact and influence each other's phenotypes. Inhibition of the pathogenic phenotypes of both FLS and TEM cells can be accomplished by selectively blocking the predominant potassium channels that they upregulate during RA: KCa1.1 (BK, Slo1, MaxiK, KCNMA1) upregulated by FLS and Kv1.3 (KCNA3) upregulated by activated TEM cells. In this study, we investigated the roles of KCa1.1 and Kv1.3 in regulating the interactions between FLS and TEM cells and determined if combination therapies of KCa1.1- and Kv1.3-selective blockers are more efficacious than monotherapies in ameliorating disease in rat models of RA.
We used in vitro functional assays to assess the effects of selective KCa1.1 and Kv1.3 channel inhibitors on the interactions of FLS isolated from rats with collagen-induced arthritis (CIA) with syngeneic TEM cells. We also used flow cytometric analyses to determine the effects of KCa1.1 blockers on the expression of proteins used for antigen presentation on CIA-FLS. Finally, we used the CIA and pristane-induced arthritis models to determine the efficacy of combinatorial therapies of KCa1.1 and Kv1.3 blockers in reducing disease severity compared with monotherapies.
We show that the interactions of FLS from rats with CIA and of rat TEM cells are regulated by KCa1.1 and Kv1.3. Inhibiting KCa1.1 on FLS reduces the ability of FLS to stimulate TEM cell proliferation and migration, and inhibiting Kv1.3 on TEM cells reduces TEM cells' ability to enhance FLS expression of KCa1.1 and major histocompatibility complex class II protein, as well as stimulates their invasion. Furthermore, we show that combination therapies of selective KCa1.1 and Kv1.3 blockers are more efficacious than monotherapies at reducing signs of disease in two rat models of RA.
Our results demonstrate the importance of KCa1.1 and Kv1.3 in regulating FLS and TEM cells during RA, as well as the value of combined therapies targeting both of these cell types to treat RA.

To establish a cornea transplant model in a pigmented rat strain and to define the immunologic reaction toward corneal allografts, by studying the cellular and humoral immune response after keratoplasty.
Full thickness penetrating keratoplasty was performed on Brown Norway (RT1n) recipients using fully major histocompatibility complex (MHC)-mismatched Piebald-Viral-Glaxo (PVG; RT1c) donors. Using multicolor flow cytometry (FACS) we quantified and compared the cellular composition of draining versus non-draining lymph nodes (LN). Furthermore, we developed an isolation method to release viable graft infiltrating lymphocytes (GIL) and subjected them to phenotypic analysis and screened serum from transplanted animals for allo-antibodies.
Assessing ipsi-lateral submandibular LN we find ample evidence for post surgical inflammation such as elevated absolute numbers of cluster of differentiation (CD)4+, CD8+, B-cells, and differential expression of CD134. However, we could not unequivocally identify an allo-antigen-specific immune response. FACS analysis of lymphocytes isolated from collagenase digested rejected corneas revealed the following six distinct subpopulations: MHC-2+ cells, CD4+ T-cells, CD8+ T-cells, CD161(dull) large granular lymphocytes, CD3+ CD8+ CD161(dull) natural killer (NK)-T-cells and CD161(high) CD3⁻ NK cells. At post-operation day (POD)-07 only CD161(dull) MHC-2(neg) large granular lymphocytes (LGLs) were detected in syngeneic and allo-grafts. In concordance with an increase in B-cell numbers we often detected copious amounts of allo-antibodies in serum of rejecting animals, in particular immunoglobulin (Ig) M (IgM), immunoglobulin (Ig) G1 (IgG1), and IgG2a.
Our results demonstrate that despite its immune privileged status and low-responder characteristics of the strain combination, allogeneic corneal grafts mount a full fledged T helper1 (Th1) and Th2 response. The presence of NK-T-cells and NK-cells in rejecting corneas shows the synergy between innate and adaptive immunity during allograft destruction.

  • FC/FACS
  • Rattus norvegicus (Rat)

Superagonist CD28 antibody preferentially expanded Foxp3-expressing nTreg cells and prevented graft-versus-host diseases.

In Cell Transplantation on 25 September 2009 by Kitazawa, Y., Fujino, M., et al.

Regulatory lymphocytes play a pivotal role in preventing organ-specific autoimmune disease and in induction and maintenance of tolerance in various experimental transplantation models. The enhancement of the number and activity of peripheral CD4(+)CD25(+) Treg cells is an obvious goal for the treatment of autoimmunity and for the suppression of alloreactions. The present study demonstrates that naturally occurring CD4(+)CD25(+) Treg (nTreg) cells preferentially proliferate to a fourfold increase within 3 days in response to the administration of a single superagonistic CD28-specific monoclonal antibody (supCD28 mAb). The appearance of increased Foxp3 molecules was accompanied with polarization toward a Th2 cytokine profile with decreased production of IFN-gamma and increased production of IL-4 and IL-10 in the expanded Treg subset. Adoptive transfer of supCD28 mAb-expanded cells in a graft-versus-host disease (GvHD) model induced a potent inhibition of lethality. These results suggest that this therapeutic effect is mediated by the in vivo expansion of nTreg cells. Taken together, these data demonstrate that supCD28-mAb may target nTreg cells in vivo and maintain and enhance their potent regulatory functions for the treatment GvHD.

  • Immunology and Microbiology

Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response.

In BMC Immunology on 18 April 2008 by Serafino, A., Sinibaldi Vallebona, P., et al.

Besides few data concerning the antiseptic properties against a range of microbial agents and the anti-inflammatory potential both in vitro and in vivo, little is known about the influence of Eucalyptus oil (EO) extract on the monocytic/macrophagic system, one of the primary cellular effectors of the immune response against pathogen attacks. The activities of this natural extract have mainly been recognized through clinical experience, but there have been relatively little scientific studies on its biological actions. Here we investigated whether EO extract is able to affect the phagocytic ability of human monocyte derived macrophages (MDMs) in vitro and of rat peripheral blood monocytes/granulocytes in vivo in absence or in presence of immuno-suppression induced by the chemotherapeutic agent 5-fluorouracil (5-FU).
Morphological activation of human MDMs was analysed by scanning electron microscopy. Phagocytic activity was tested: i) in vitro in EO treated and untreated MDMs, by confocal microscopy after fluorescent beads administration; ii) in vivo in monocytes/granulocytes from peripheral blood of immuno-competent or 5-FU immuno-suppressed rats, after EO oral administration, by flow cytometry using fluorescein-labelled E. coli. Cytokine release by MDMs was determined using the BD Cytometric Bead Array human Th1/Th2 cytokine kit.
EO is able to induce activation of MDMs, dramatically stimulating their phagocytic response. EO-stimulated internalization is coupled to low release of pro-inflammatory cytokines and requires integrity of the microtubule network, suggesting that EO may act by means of complement receptor-mediated phagocytosis. Implementation of innate cell-mediated immune response was also observed in vivo after EO administration, mainly involving the peripheral blood monocytes/granulocytes. The 5-FU/EO combined treatment inhibited the 5-FU induced myelotoxicity and raised the phagocytic activity of the granulocytic/monocytic system, significantly decreased by the chemotherapic.
Our data, demonstrating that Eucalyptus oil extract is able to implement the innate cell-mediated immune response, provide scientific support for an additional use of this plant extract, besides those concerning its antiseptic and anti-inflammatory properties and stimulate further investigations also using single components of this essential oil. This might drive development of a possible new family of immuno-regulatory agents, useful as adjuvant in immuno-suppressive pathologies, in infectious disease and after tumour chemotherapy.

  • Immunology and Microbiology
View this product on CiteAb