Product Citations: 24

A Novel Approach to Peripheral Nerve Regeneration: Local FK-506 Delivery Using a Reservoir Flap Model.

In Yonsei Medical Journal on 1 December 2024 by Hong, J. W., Lim, J. H., et al.

Peripheral nerve injuries can lead to lasting functional impairments, impacting movement and quality of life. FK-506, a widely used immunosuppressant, has demonstrated potential in promoting nerve regeneration in addition to its immunosuppressive effects. This study investigates the use of a local reservoir flap to deliver FK-506 directly to the nerve injury site, aiming to enhance nerve regeneration while minimizing systemic immunosuppression.
Sciatic nerve injuries were surgically induced in 24 rats, which were divided into control, 0.5 mg/kg FK-506 (Exp 1), and 2.0 mg/kg FK-506 (Exp 2) groups. A superficial inferior epigastric artery flap served as a reservoir for FK-506, allowing direct delivery to the injury site. FK-506 was administered intermittently over a 4-week period. Outcomes included the Sciatic Functional Index (SFI), muscle recovery (width and weight), nerve morphology, expression of neurogenic markers such as GDNF, immune cell counts, and body weight.
Exp 1 (0.5 mg/kg) demonstrated significant improvements in SFI, GDNF expression, and muscle width compared to the control and high-dose groups. These findings suggest that FK-506 administration via a reservoir flap, particularly at a lower dose, supports effective nerve regeneration. Additionally, FK-506 treatment did not result in significant changes in immune cell profiles or body weight, indicating minimal systemic effects.
Localized FK-506 administration via a reservoir flap effectively enhances peripheral nerve regeneration and minimizes systemic immunosuppression, making it a promising approach for clinical application in treating peripheral nerve injuries.
© Copyright: Yonsei University College of Medicine 2024.

  • Rattus norvegicus (Rat)
  • Neuroscience

IL-33 Signaling Inhibition Leads to a Preeclampsia-Like Phenotype in Pregnant Rats.

In American Journal of Reproductive Immunology (New York, N.Y. : 1989) on 1 July 2024 by Wang, X., Shields, C. A., et al.

Preeclampsia (PE) is a hypertensive pregnancy disorder that is a leading cause of maternal and fetal morbidity and mortality characterized by maternal vascular dysfunction, oxidative stress, chronic immune activation, and excessive inflammation. No cure exists beyond delivery of the fetal-placental unit and the mechanisms driving pathophysiology are not fully understood. However, aberrant immune responses have been extensively characterized in clinical studies and shown to mediate PE pathophysiology in animal studies. One pathway that may mediate aberrant immune responses in PE is deficiencies in the IL-33 signaling pathway. In this study, we aim to investigate the impact of IL-33 signaling inhibition on cNK, TH17, and TReg populations, vascular function, and maternal blood pressure during pregnancy.
In this study, IL-33 signaling was inhibited using two different methods: intraperitoneal administration of recombinant ST2 (which acts as a decoy receptor for IL-33) and administration of a specific IL-33 neutralizing antibody. Maternal blood pressure, uterine artery resistance index, renal and placental oxidative stress, cNK, TH17, and TReg populations, various cytokines, and pre-proendothelin-1 levels were measured.
IL-33 signaling inhibition increased maternal blood pressure, uterine artery resistance, placental and renal oxidative stress. IL-33 signaling inhibition also increased placental cNK and TH17 and renal TH17 cells while decreasing placental TReg populations. IL-33 neutralization increased circulating cNK and TH17s and decreased circulating TRegs in addition to increasing pre-proendothelin-1 levels.
Data presented in this study demonstrate a role for IL-33 signaling in controlling vascular function and maternal blood pressure during pregnancy possibly by mediating innate and adaptive immune inflammatory responses, identifying the IL-33 signaling pathway as a potential therapeutic target for managing preeclampsia.
© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  • Endocrinology and Physiology

IL-33 supplementation improves uterine artery resistance and maternal hypertension in response to placental ischemia.

In American Journal of Physiology - Heart and Circulatory Physiology on 1 April 2024 by Wang, X., Shields, C., et al.

Preeclampsia (PE), a leading cause of maternal/fetal morbidity and mortality, is a hypertensive pregnancy disorder with end-organ damage that manifests after 20 wk of gestation. PE is characterized by chronic immune activation and endothelial dysfunction. Clinical studies report reduced IL-33 signaling in PE. We use the Reduced Uterine Perfusion Pressure (RUPP) rat model, which mimics many PE characteristics including reduced IL-33, to identify mechanisms mediating PE pathophysiology. We hypothesized that IL-33 supplementation would improve blood pressure (BP), inflammation, and oxidative stress (ROS) during placental ischemia. We implanted intraperitoneal mini-osmotic pumps infusing recombinant rat IL-33 (1 µg/kg/day) into normal pregnant (NP) and RUPP rats from gestation day 14 to 19. We found that IL-33 supplementation in RUPP rats reduces maternal blood pressure and improves the uterine artery resistance index (UARI). In addition to physiological improvements, we found decreased circulating and placental cytolytic Natural Killer cells (cNKs) and decreased circulating, placental, and renal TH17s in IL-33-treated RUPP rats. cNK cell cytotoxic activity also decreased in IL-33-supplemented RUPP rats. Furthermore, renal ROS and placental preproendothelin-1 (PPET-1) decreased in RUPP rats treated with IL-33. These findings demonstrate a role for IL-33 in controlling vascular function and maternal BP during pregnancy by decreasing inflammation, renal ROS, and PPET-1 expression. These data suggest that IL-33 may have therapeutic potential in managing PE.NEW & NOTEWORTHY Though decreased IL-33 signaling has been clinically associated with PE, the mechanisms linking this signaling pathway to overall disease pathophysiology are not well understood. This study provides compelling evidence that mechanistically links reduced IL-33 with the inflammatory response and vascular dysfunction observed in response to placental ischemia, such as in PE. Data presented in this study submit the IL-33 signaling pathway as a possible therapeutic target for the treatment of PE.

  • Cardiovascular biology
  • Endocrinology and Physiology

Inhibition of Caspase 1 Reduces Blood Pressure, Cytotoxic NK Cells, and Inflammatory T-Helper 17 Cells in Placental Ischemic Rats.

In International Journal of Molecular Sciences on 10 January 2024 by Shields, C. A., Tardo, G. A., et al.

Preeclampsia (PE) is characterized by maternal hypertension, fetal growth restriction (FGR), and increased inflammation and populations of cytotoxic NK cells (cNKs) and inflammatory T-Helper 17 cells (TH17s). Both cytotoxic NK cells and TH17 cells are heavily influenced via IL-1β signaling. Caspase 1 activity leads to the release of the inflammatory cytokine IL-1β, which is increased in women with PE. Therefore, we tested the hypothesis that the inhibition of Caspase 1 with VX-765 in rats with reduced uterine perfusion pressure (RUPP) will attenuate PE pathophysiology. On gestation day (GD) 14, timed pregnant Sprague-Dawley rats underwent the RUPP or Sham procedure and were separated into groups that received either vehicle or VX-765 (50 mg/kg/day i.p.). On GD19, MAP was measured via carotid catheter and blood and tissues were collected. Bio-Plex and flow cytometry analysis were performed on placental tissues. Placental IL-1β was increased in the RUPP rats vs. the Sham rats and treatment with VX-765 reduced IL-1β in the RUPP rats. Caspase 1 inhibition reduced placental cNKs and TH17s in RUPP rats compared to vehicle-treated RUPP rats. Increased MAP was observed in RUPP rats compared with Sham rats and was reduced in RUPP + VX-765 rats. Placental reactive oxygen species (ROS) were elevated in RUPP rats compared to Sham rats. VX-765 administration reduced ROS in treated RUPP rats. Caspase 1 inhibition increased the number of live pups, yet had no effect on fetal weight or placental efficiency in the treated groups. In conclusion, Caspase 1 inhibition reduces placental IL-1β, inflammatory TH17 and cNK populations, and reduces MAP in RUPP rats. These data suggest that Caspase 1 is a key contributor to PE pathophysiology. This warrants further investigation of Caspase 1 as a potential therapeutic target to improve maternal outcomes in PE.

  • FC/FACS
  • Rattus norvegicus (Rat)
  • Cardiovascular biology
  • Immunology and Microbiology

Co-transplantation of autologous Treg cells in a cell therapy for Parkinson's disease.

In Nature on 1 July 2023 by Park, T. Y., Jeon, J., et al.

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

  • Immunology and Microbiology
  • Neuroscience
View this product on CiteAb