Product Citations: 7

Endothelial progenitor cell (EPC) dysfunction contributes to vascular disease in diabetes mellitus. However, the molecular mechanism underlying EPC dysfunction and its contribution to delayed reendothelialization in diabetes mellitus remain unclear. Our study aimed to illustrate the potential molecular mechanism underlying diabetic EPC dysfunction in vivo and in vitro. Furthermore, we assessed the effect of EPC transplantation on endothelial regeneration in diabetic rats.
Late outgrowth EPCs were isolated from the bone marrow of rats for in vivo and in vitro studies. In vitro functional assays and Western blotting were conducted to reveal the association between C-X-C chemokine receptor type 7 (CXCR7) expression and diabetic EPC dysfunction. To confirm the association between cellular CXCR7 levels and EPC function, CXCR7 expression in EPCs was upregulated and downregulated via lentiviral transduction and RNA interference, respectively. Western blotting was used to reveal the potential molecular mechanism by which the Stromal-Derived Factor-1 (SDF-1)/CXCR7 axis regulates EPC function. To elucidate the role of the SDF-1/CXCR7 axis in EPC-mediated endothelial regeneration, a carotid artery injury model was established in diabetic rats. After the model was established, saline-treated, diabetic, normal, or CXCR7-primed EPCs were injected via the tail vein.
Diabetic EPC dysfunction was associated with decreased CXCR7 expression. Furthermore, EPC dysfunction was mimicked by knockdown of CXCR7 in normal EPCs. However, upregulating CXCR7 expression reversed the dysfunction of diabetic EPCs. The SDF-1/CXCR7 axis positively regulated EPC function by activating the AKT-associated Kelch-like ECH-associated protein 1 (keap-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis, which was reversed by blockade of AKT and Nrf2. Transplantation of CXCR7-EPCs accelerated endothelial repair and attenuated neointimal hyperplasia in diabetes mellitus more significantly than transplantation of diabetic or normal EPCs. However, the therapeutic effect of CXCR7-EPC transplantation on endothelial regeneration was reversed by knockdown of Nrf2 expression.
Dysfunction of diabetic EPCs is associated with decreased CXCR7 expression. Furthermore, the SDF-1/CXCR7 axis positively regulates EPC function by activating the AKT/keap-1/Nrf2 axis. CXCR7-primed EPCs might be useful for endothelial regeneration in diabetes-associated vascular disease.

  • Rattus norvegicus (Rat)
  • Stem Cells and Developmental Biology

5-Azacytidine-Induced Cardiomyocyte Differentiation of Very Small Embryonic-Like Stem Cells.

In Stem Cells International on 24 September 2020 by Sun, X. L., Bao, Z. Y., et al.

The use of stem cells in generating cell-based pacemaker therapies for bradyarrhythmia is currently being considered. Due to the propensity of stem cells to form tumors, as well as ethical issues surrounding their use, the seed cells used in cardiac biological pacemakers have limitations. Very small embryonic-like stem cells (VSELs) are a unique and rare adult stem cell population, which have the same structural, genetic, biochemical, and functional characteristics as embryonic stem cells without the ethical controversy. In this study, we investigated the ability of rat bone marrow- (BM-) derived VSELs to differentiate in vitro into cardiomyocytes by 5-Azacytidine (5-AzaC) treatment. The morphology of VSELs treated with 10 μM 5-AzaC increased in volume and gradually changed to cardiomyocyte-like morphology without massive cell death. Additionally, mRNA expression of the cardiomyocyte markers cardiac troponin-T (cTnT) and α-sarcomeric actin (α-actin) was significantly upregulated after 5-AzaC treatment. Conversely, stem cell markers such as Nanog, Oct-4, and Sox2 were continuously downregulated posttreatment. On day 14 post-5-AzaC treatment, the positive expression rates of cTnT and α-actin were 18.41 ± 1.51% and 19.43 ± 0.51%, respectively. Taken together, our results showed that rat BM-VSELs have the ability to differentiate into cardiomyocytes in vitro. These findings suggest that VSELs would be useful as seed cells in exploring the mechanism of biological pacemaker activity.
Copyright © 2020 XiaoLin Sun et al.

  • Stem Cells and Developmental Biology

18F-Fluciclovine (trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid; anti-18F-FACBC) is a positron emission tomography (PET) tracer for diagnosing cancers (e.g., prostate and breast cancer). The most frequent metastatic organ of these cancers is bone. Fluciclovine-PET can visualize bony lesions in clinical practice; however, such lesions have not been described histologically. Methods: We investigated the potential of 14C-fluciclovine in aiding the visualization of osteolytic and osteoblastic bone metastases (with histological analyses), compared with 3H-2-deoxy-2-fluoro-D-glucose (3H-FDG), 3H-choline chloride (3H-choline), and 99mTc-hydroxymethylene diphosphonate (99mTc-HMDP) by using triple-tracer autoradiography in rat breast cancer osteolytic (on day 12 ± 1 postinjection of MRMT-1) and prostate cancer osteoblastic (on day 20 ± 3 postinjection of AT6.1) metastatic models. Results: The distribution patterns of 14C-fluciclovine, 3H-FDG, and 3H-choline, but not 99mTc-HMDP, were similar in both models, and the lesions where these tracers accumulated were, histologically, typical osteolytic and osteoblastic lesions. 99mTc-HMDP accumulated mostly in osteoblastic lesions. 14C-fluciclovine could visualize the osteolytic lesions as early as day 6 postinjection of MRMT-1. However, differential distributions in 14C-fluciclovine and 3H-FDG existed, based on histological differences: low 14C-fluciclovine and high 3H-FDG accumulation in osteolytic lesions with inflammation. In the osteoblastic metastatic model, visualization of osteoblastic lesions with 14C-fluciclovine was not clear, yet clearer than with 3H-FDG. Although half of the osteoblastic lesions with 14C-fluciclovine accumulation showed negligible 3H-choline accumulation in comparison, they were histologically similar to lesions with marked 14C-fluciclovine and 3H-choline accumulation. Conclusion: These results suggest that fluciclovine-PET can visualize true osteolytic and osteoblastic bone metastatic lesions.

  • IHC
  • Rattus norvegicus (Rat)
  • Cancer Research

Effects of Na/K-ATPase and its ligands on bone marrow stromal cell differentiation.

In Stem Cell Research on 1 July 2014 by Sayed, M., Drummond, C. A., et al.

Endogenous ligands of Na/K-ATPase have been demonstrated to increase in kidney dysfunction and heart failure. It is also reported that Na/K-ATPase signaling function effects stem cell differentiation. This study evaluated whether Na/K-ATPase activation through its ligands and associated signaling functions affect bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) differentiation capacity. BMSCs were isolated from male Sprague-Dawley rats and cultured in minimal essential medium alpha (MEM-α) supplemented with 15% Fetal Bovine serum (FBS). The results showed that marinobufagenin (MBG), a specific Na/K-ATPase ligand, potentiated rosiglitazone-induced adipogenesis in these BMSCs. Meanwhile, it attenuated BMSC osteogenesis. Mechanistically, MBG increased CCAAT/enhancer binding protein alpha (C/EBPα) protein expression through activation of an extracellular regulated kinase (ERK) signaling pathway, which leads to enhanced rosiglitazone-induced adipogenesis. Inhibition of ERK activation by U0126 blocks the effect of MBG on C/EBPα expression and on rosiglitazone-induced adipogenesis. Reciprocally, MBG reduced runt-related transcription factor 2 (RunX2) expression, which resulted in the inhibition of osteogenesis induced by β-glycerophosphate/ascorbic acid. MBG also potentiated rosiglitazone-induced adipogenesis in 3T3-L1 cells and in mouse BMSCs. These results suggest that Na/K-ATPase and its signaling functions are involved in the regulation of BMSCs differentiation.
Copyright © 2014. Published by Elsevier B.V.

  • Stem Cells and Developmental Biology

Recipient hyperbilirubinaemia protects cardiac graft in rat heterotopic heart transplantation.

In European Journal of Cardio-Thoracic Surgery : Official Journal of the European Association for Cardio-thoracic Surgery on 1 March 2014 by Lee, S., Yamada, T., et al.

Since bilirubin is a known powerful antioxidant, this study examined whether recipient hyperbilirubinaemia protected heart grafts from ischaemia/reperfusion (I/R) injury and chronic rejection associated with rat cardiac transplantation.
Heterotopic heart transplantation (HTx) was performed using congenitally hyperbilirubinaemic GUNN (j/j) and normobilirubinaemic GUNN (+/+) rats. Syngenic grafts from +/+ rats were transplanted into +/+ or j/j rats with 6 or 18 h cold storage in University of Wisconsin solution to study I/R injury. To evaluate the effect on chronic rejection, Brown Norway rat heart grafts were transplanted into +/+ or j/j rats under short-course tacrolimus immunosuppression.
The +/+ grafts in j/j rats demonstrated significantly lower serum creatine phosphokinase and higher left ventricular developed pressures and had smaller infarct areas than +/+ rats at 3 h after reperfusion. Graft survival with 18 h cold storage increased from 0% in +/+ rats to 41.7% in j/j rats. Malondialdehyde (a marker of lipid peroxidation), mRNA of the inflammatory mediators and phosphorylation of ERK1/2 were significantly decreased in the grafts transplanted into j/j rats compared with those transplanted into +/+ rats 1-3 h after reperfusion. The mean allograft survival in j/j recipients was prolonged to a median survival of 150 days from 84 days in +/+ recipients and was associated with less macrophage infiltrates and less intragraft inflammatory cytokine mRNA at d60. In vitro T-cell proliferation was significantly inhibited in the presence of bilirubin.
Recipient hyperbilirubinaemia ameliorated cardiac I/R injury, as well as chronic allograft rejection following HTx via regulation of inflammatory responses or T-cell proliferation.

  • Cardiovascular biology
View this product on CiteAb