Product Citations: 7

Lactate produced by alveolar type II cells suppresses inflammatory alveolar macrophages in acute lung injury.

In The FASEB Journal on 1 December 2023 by Roy, R. M., Allawzi, A., et al.

Alveolar inflammation is a hallmark of acute lung injury (ALI), and its clinical correlate is acute respiratory distress syndrome-and it is as a result of interactions between alveolar type II cells (ATII) and alveolar macrophages (AM). In the setting of acute injury, the microenvironment of the intra-alveolar space is determined in part by metabolites and cytokines and is known to shape the AM phenotype. In response to ALI, increased glycolysis is observed in AT II cells, mediated by the transcription factor hypoxia-inducible factor (HIF) 1α, which has been shown to decrease inflammation. We hypothesized that in acute lung injury, lactate, the end product of glycolysis, produced by ATII cells shifts AMs toward an anti-inflammatory phenotype, thus mitigating ALI. We found that local intratracheal delivery of lactate improved ALI in two different mouse models. Lactate shifted cytokine expression of murine AMs toward increased IL-10, while decreasing IL-1 and IL-6 expression. Mice with ATII-specific deletion of Hif1a and mice treated with an inhibitor of lactate dehydrogenase displayed exacerbated ALI and increased inflammation with decreased levels of lactate in the bronchoalveolar lavage fluid; however, all those parameters improved with intratracheal lactate. When exposed to LPS (to recapitulate an inflammatory stimulus as it occurs in ALI), human primary AMs co-cultured with alveolar epithelial cells had reduced inflammatory responses. Taken together, these studies reveal an innate protective pathway, in which lactate produced by ATII cells shifts AMs toward an anti-inflammatory phenotype and dampens excessive inflammation in ALI.
© 2023 Federation of American Societies for Experimental Biology.

  • Immunology and Microbiology

HIF1A-dependent induction of alveolar epithelial PFKFB3 dampens acute lung injury.

In JCI Insight on 22 December 2022 by Vohwinkel, C. U., Burns, N., et al.

Acute lung injury (ALI) is a severe form of lung inflammation causing acute respiratory distress syndrome in patients. ALI pathogenesis is closely linked to uncontrolled alveolar inflammation. We hypothesize that specific enzymes of the glycolytic pathway could function as key regulators of alveolar inflammation. Therefore, we screened isolated alveolar epithelia from mice exposed to ALI induced by injurious ventilation to assess their metabolic responses. These studies pointed us toward a selective role for isoform 3 of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Pharmacologic inhibition or genetic deletion of Pfkfb3 in alveolar epithelia (Pfkfb3loxP/loxP SPC-ER-Cre+ mice) was associated with profound increases in ALI during injurious mechanical ventilation or acid instillation. Studies in genetic models linked Pfkfb3 expression and function to Hif1a. Not only did intratracheal pyruvate instillation reconstitute Pfkfb3loxP/loxP or Hif1aloxP/loxP SPC-ER-Cre+ mice, but pyruvate was also effective in ALI treatment of wild-type mice. Finally, proof-of-principle studies in human lung biopsies demonstrated increased PFKFB3 staining in injured lungs and colocalized PFKFB3 to alveolar epithelia. These studies reveal a specific role for PFKFB3 in counterbalancing alveolar inflammation and lay the groundwork for novel metabolic therapeutic approaches during ALI.

Photothermal activation of astrocyte cells using localized surface plasmon resonance of gold nanorods.

In Journal of Biophotonics on 1 April 2017 by Eom, K., Hwang, S., et al.

Although it has been revealed that astrocytes, generally known as star-shaped glial cells, play critical roles in the functions of central nervous system, there have been few efforts to directly modulate their activities and responses. In this study, an optical stimulation strategy for producing intracellular Ca2+ transients of astrocytes is demonstrated using near-infrared (NIR) light and localized surface plasmon resonance. It is presented that NIR stimulation of micro-second duration combined with gold nanorods (GNRs) efficiently produces stronger Ca2+ transients of astrocytes, which seems to be associated with a local heat generation by photothermal effects of GNRs. Since the proposed scheme can directly activate astrocytes with a high reliability, it is expected that GNR-mediated NIR stimulation could be utilized to facilitate minimally invasive physiological studies on the astrocyte functions. Photos of intracellular Ca2+ transient of astrocytes with membrane-bound GNRs after optical stimulation at 30 s.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  • Neuroscience

Despite a potential of infrared neural stimulation (INS) for modulating neural activities, INS suffers from limited light confinement and bulk tissue heating. Here, a novel methodology for an advanced optical stimulation is proposed by combining near-infrared (NIR) stimulation with gold nanorods (GNRs) targeted to neuronal cell membrane. We confirmed experimentally that in vitro and in vivo neural activation is associated with a local heat generation based on NIR stimulation and GNRs. Compared with the case of NIR stimulation without an aid of GNRs, combination with cell-targeted GNRs allows photothermal stimulation with faster neural response, lower delivered energy, higher stimulation efficiency and stronger behavior change. Since the suggested method can reduce a requisite radiant exposure level and alleviate a concern of tissue damage, it is expected to open up new possibilities for applications to optical neuromodulations for diverse excitable tissues and treatments of neurological disorders.

  • ICC
  • Rattus norvegicus (Rat)

Ovarian hormone level alterations during rat post-reproductive life-span influence CD8 + T-cell homeostasis.

In Experimental Biology and Medicine (Maywood, N.J.) on 1 October 2015 by Arsenović-Ranin, N., Kosec, D., et al.

The study examined the putative role of ovarian hormones in shaping of rat peripheral T-cell compartment during post-reproductive period. In 20-month-old rats ovariectomized (Ox) at the very end of reproductive period, thymic output, cellularity and composition of major TCRαβ + peripheral blood lymphocyte and splenocyte subsets were analyzed. Ovariectomy led to the enlargement of CD8 + peripheral blood lymphocyte and splenocyte subpopulations. This reflected: (i) a more efficient thymic generation of CD8 + cells as indicated by increased number of CD4+CD8 + double positive and the most mature CD4-CD8+TCRαβ(high) thymocytes and CD8 + recent thymic emigrants (RTEs) in peripheral blood, but not in the spleen of Ox rats, and (ii) the expansion of CD8 + memory/activated peripheral blood lymphocytes and splenocytes. The latter was consistent with a greater frequency of proliferating cells among freshly isolated memory/activated CD8 + peripheral blood lymphocytes and splenocytes and increased proliferative response of CD8 + splenocytes to stimulation with plate-bound anti-CD3 antibody. The former could be related to the rise in splenic IL-7 and IL-15 mRNA expression. Although ovariectomy affected the overall number of CD4 + T cells in none of the examined compartments, it increased CD4+FoxP3 + peripheral blood lymphocyte and splenocyte counts by enhancing their generation in periphery. Collectively, the results suggest that ovariectomy-induced long-lasting disturbances in ovarian hormone levels (mirrored in diminished progesterone serum level in 20-month-old rats) affects both thymic CD8 + cell generation and peripheral homeostasis and leads to the expansion of CD4+FoxP3 + cells in the periphery, thereby enhancing autoreactive cell control on account of immune system efficacy to combat infections and tumors.
© 2015 by the Society for Experimental Biology and Medicine.

  • Endocrinology and Physiology
  • Immunology and Microbiology
View this product on CiteAb