Product Citations: 20

The current process of meat production using livestock has significant effects on the global environment, including high emissions of greenhouse gases. In recent years, cultured meat has attracted attention as a way to acquire animal proteins. However, the lack of markers that isolate proliferating cells from bovine tissues and the complex structure of the meat make it difficult to culture meat in a dish. In this study, we screened 246 cell-surface antibodies by fluorescence-activated cell sorting for their capacity to form colonies and their suitability to construct spheroid "meat buds". CD29+ cells (Ha2/5 clone) have a high potency to form colonies and efficiently proliferate on fibronectin-coated dishes. Furthermore, the meat buds created from CD29+ cells could differentiate into muscle and adipose cells in a three-dimensional structure. The meat buds embedded in the collagen gel proliferated in the matrix and formed large aggregates. Approximately 10 trillion cells can theoretically be obtained from 100 g of bovine tissue by culturing and amplifying them using these methods. The CD29+ cell characteristics of bovine tissue provide insights into the production of meat alternatives in vitro.

  • ICC-IF
  • Cell Biology

TRPV4 channels mediate the mechanoresponse in retinal microglia.

In GLIA on 1 June 2021 by Redmon, S. N., Yarishkin, O., et al.

The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.
© 2021 Wiley Periodicals LLC.

  • Neuroscience

Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer.

In Nature Communications on 24 July 2020 by Aubert, L., Nandagopal, N., et al.

Despite its importance in human cancers, including colorectal cancers (CRC), oncogenic KRAS has been extremely challenging to target therapeutically. To identify potential vulnerabilities in KRAS-mutated CRC, we characterize the impact of oncogenic KRAS on the cell surface of intestinal epithelial cells. Here we show that oncogenic KRAS alters the expression of a myriad of cell-surface proteins implicated in diverse biological functions, and identify many potential surface-accessible therapeutic targets. Cell surface-based loss-of-function screens reveal that ATP7A, a copper-exporter upregulated by mutant KRAS, is essential for neoplastic growth. ATP7A is upregulated at the surface of KRAS-mutated CRC, and protects cells from excess copper-ion toxicity. We find that KRAS-mutated cells acquire copper via a non-canonical mechanism involving macropinocytosis, which appears to be required to support their growth. Together, these results indicate that copper bioavailability is a KRAS-selective vulnerability that could be exploited for the treatment of KRAS-mutated neoplasms.

  • Cancer Research

IL-1β induces rod degeneration through the disruption of retinal glutamate homeostasis.

In Journal of Neuroinflammation on 3 January 2020 by Charles-Messance, H., Blot, G., et al.

Age-related macular degeneration is characterized by the accumulation of subretinal macrophages and the degeneration of cones, but mainly of rods. We have previously shown that Mononuclear Phagocytes-derived IL-1β induces rod photoreceptor cell death during experimental subretinal inflammation and in retinal explants exposed to IL-1β but the mechanism is unknown.
Retinal explants were culture in the presence of human monocytes or IL-1β and photoreceptor cell survival was analyzed by TUNEL labeling. Glutamate concentration and transcription levels of gene involved in the homeostasis of glutamate were analyzed in cell fractions of explant cultured or not in the presence of IL-1β. Glutamate receptor antagonists were evaluated for their ability to reduce photoreceptor cell death in the presence of IL1-β or monocytes.
We here show that IL-1β does not induce death in isolated photoreceptors, suggesting an indirect effect. We demonstrate that IL-1β leads to glutamate-induced rod photoreceptor cell death as it increases the extracellular glutamate concentrations in the retina through the inhibition of its conversion to glutamine in Müller cells, increased release from Müller cells, and diminished reuptake. The inhibition of non-NMDA receptors completely and efficiently prevented rod apoptosis in retinal explants cultured in the presence of IL-1β or, more importantly, in vivo, in a model of subretinal inflammation.
Our study emphasizes the importance of inflammation in the deregulation of glutamate homeostasis and provides a comprehensive mechanism of action for IL-1β-induced rod degeneration.

  • Immunology and Microbiology

Cell type-specific complement expression from healthy and diseased retinae

Preprint on BioRxiv : the Preprint Server for Biology on 10 September 2018 by Pauly, D., Schäfer, N., et al.

Retinal degeneration is associated with complement system activation, but retinal sources of complement are unknown. Here, we describe the human and murine complement transcriptomes of Müller cells, microglia/macrophages, vascular cells, neurons and retinal pigment epithelium (RPE) in health and disease. All cell populations expressed c1s, c3, cfb, cfp, cfh and cfi . Murine Müller cells contributed the highest amount of complement activators ( c1s, c3, cfb ). RPE mainly expressed cfh, while cfi and cfp transcripts were most abundant in neurons. The main complement negative regulator in the human retina was cfi , while cfh dominated in the murine retina. Importantly, the expression of c1s, cfb, cfp, cfi increased and that of cfh decreased with aging. Impaired photoreceptor recycling led to an enhanced c3 expression in RPE and to a reduced cfi expression in microglia/macrophages. Expression of complement components was massively upregulated after transient retinal ischemia in murine microglia, Müller cells and RPE. The individual signature of complement expression in distinct murine and human retinal cell types indicates a local, well-orchestrated regulation of the complement system in both species.

View this product on CiteAb