Product Citations: 9

Stromal Vascular Fraction Reverses the Age-Related Impairment in Revascularization following Injury.

In Journal of Vascular Research on 9 September 2022 by Rowe, G., Heng, D. S., et al.

Adipose-derived stromal vascular fraction (SVF) has emerged as a potential regenerative therapy, but few studies utilize SVF in a setting of advanced age. Additionally, the specific cell population in SVF providing therapeutic benefit is unknown. We hypothesized that aging would alter the composition of cell populations present in SVF and its ability to promote angiogenesis following injury, a mechanism that is T cell-mediated. SVF isolated from young and old Fischer 344 rats was examined with flow cytometry for cell composition. Mesenteric windows from old rats were isolated following exteriorization-induced (EI) hypoxic injury and intravenous injection of one of four cell therapies: (1) SVF from young or (2) old donors, (3) SVF from old donors depleted of or (4) enriched for T cells. Advancing age increased the SVF T-cell population but reduced revascularization following injury. Both young and aged SVF incorporated throughout the host mesenteric microvessels, but only young SVF significantly increased vascular area following EI. This study highlights the effect of donor age on SVF angiogenic efficacy and demonstrates how the ex vivo mesenteric-window model can be used in conjunction with SVF therapy to investigate its contribution to angiogenesis.
© 2022 S. Karger AG, Basel.

  • Cardiovascular biology

Chemotherapy has been used to inhibit cancer growth for decades, but emerging evidence shows it can affect the tumor stroma, unintentionally promoting cancer malignancy. After treatment of primary tumors, remaining drugs drain via lymphatics. Though all drugs interact with the lymphatics, we know little of their impact on them. Here, we show a previously unknown effect of platinums, a widely used class of chemotherapeutics, to directly induce systemic lymphangiogenesis and activation. These changes are dose-dependent, long-lasting, and occur in healthy and cancerous tissue in multiple mouse models of breast cancer. We found similar effects in human ovarian and breast cancer patients whose treatment regimens included platinums. Carboplatin treatment of healthy mice prior to mammary tumor inoculation increased cancer metastasis as compared to no pre-treatment. These platinum-induced phenomena could be blocked by VEGFR3 inhibition. These findings have implications for cancer patients receiving platinums and may support the inclusion of anti-VEGFR3 therapy into treatment regimens or differential design of treatment regimens to alter these potential effects.
Copyright © 2022 Harris, Esparza, Azimi, Cornelison, Azar, Llaneza, Belanger, Mathew, Tkachenko, Perez, Rosean, Bostic, Cornelison, Tate, Peirce-Cottler, Paquette, Mills, Landen, Saucerman, Dillon, Pompano, Rutkowski and Munson.

  • IHC
  • Rattus norvegicus (Rat)

Acute decompensated heart failure (ADHF), a live-threatening complication of heart failure (HF), associates a further decrease of the already by HF-impaired cardiac function with an increase in heart rate. We evaluated, using a new model of ADHF, whether heart rate reduction (HRR) opposes the acute decompensation-related aggravation of cardiovascular dysfunction.
Cardiac output (echocardiography), cardiac tissue perfusion (magnetic resonance imaging), pulmonary wet weight, and in vitro coronary artery relaxation (Mulvany) were assessed 1 and 14 days after acute decompensation induced by salt-loading (1.8 g/kg, PO) in rats with well-established HF due to coronary ligation. HRR was induced by administration of the If current inhibitor S38844, 12 mg/kg PO twice daily for 2.5 days initiated 12 h or 6 days after salt-loading (early or delayed treatment, respectively). After 24 h, salt-loading resulted in acute decompensation, characterized by a reduction in cardiac output (HF: 130 ± 5 mL/min, ADHF: 105 ±  8 mL/min; P < 0.01), associated with a decreased myocardial perfusion (HF: 6.41 ± 0.53 mL/min/g, ADHF: 4.20 ± 0.11 mL/min/g; P < 0.01), a slight increase in pulmonary weight (HF: 1.68 ± 0.09 g, ADHF: 1.81 ± 0.15 g), and impaired coronary relaxation (HF: 55 ± 1% of pre-contraction at acetylcholine 4.5 10-5  M, ADHF: 27 ± 7 %; P < 0.01). Fourteen days after salt-loading, cardiac output only partially recovered (117 ± 5 mL/min; P < 0.05), while myocardial tissue perfusion (4.51 ± 0.44 mL/min; P < 0.01) and coronary relaxation (28 ± 4%; P < 0.01) remained impaired, but pulmonary weight further increased (2.06 ± 0.15 g, P < 0.05). Compared with untreated ADHF, HRR induced by S38844 improved cardiac output (125 ± 1 mL/min; P < 0.05), myocardial tissue perfusion (6.46 ± 0.42 mL/min/g; P < 0.01), and coronary relaxation (79 ± 2%; P < 0.01) as soon as 12 h after S38844 administration. These effects persisted beyond S38844 administration, illustrated by the improvements in cardiac output (130 ± 6 mL/min; P < 0.05), myocardial tissue perfusion (6.38 ± 0.48 mL/min/g; P < 0.01), and coronary relaxation (71 ± 4%; P < 0.01) at Day 14. S38844 did not modify pulmonary weight at Day 1 (1.78 ± 0.04 g) but tended to decrease pulmonary weight at Day 14 (1.80 ± 0.18 g). While delayed HRR induced by S38844 never improved cardiac function, early HRR rendered less prone to a second acute decompensation.
In a model mimicking human ADHF, early, but not delayed, transient HRR induced by the If current inhibitor S38844 opposes acute decompensation by preventing the decompensated-related aggravation of cardiovascular dysfunction as well as the development of pulmonary congestion, and these protective effects persist beyond the transient treatment. Whether early transient HRR induced by If current inhibitors or other bradycardic agents, i.e. beta-blockers, exerts beneficial effects in human ADHF warrants further investigation.
© 2021 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

  • IHC
  • Rattus norvegicus (Rat)
  • Cardiovascular biology

Bone marrow mesenchymal stem cell‑derived extracellular vesicles improve the survival of transplanted fat grafts.

In Molecular Medicine Reports on 1 September 2017 by Huang, H., Feng, S., et al.

Autologous fat grafting is a promising surgical technique for soft tissue augmentation, reconstruction and rejuvenation. However, it is limited by the low survival rate of the transplanted fat, due to the slow revascularization of such grafts. Previous studies have demonstrated that bone marrow mesenchymal stem cell‑derived extracellular vesicles (BMSC‑EVs) are proangiogenic. The present study aimed to investigate whether BMSC‑EVs could improve the survival of transplanted fat grafts. Extracellular vesicles were isolated from the supernatant of cultured rat bone marrow mesenchymal stem cells, and characterized by flow cytometry and scanning electron microscopy. Their proangiogenic potential was measured in vitro using tube formation and cell migration assays. Subsequently, human fat tissue grafts, alongside various concentrations of BMSC‑EVs, were subcutaneously injected into nude mice. A total of 12 weeks following transplantation, the mice were sacrificed and the grafts were harvested. The grafts from the experimental group had a higher survival rate and an increased number of vessels compared with grafts from the control group, as demonstrated by tissue volume, weight and histological analyses. Reverse transcription‑quantitative polymerase chain reaction analysis indicated that the expression levels of proangiogenic factors were increased in the experimental group compared with in the control group, thus suggesting that BMSC‑EVs may promote neovascularization by stimulating the secretion of proangiogenic factors. The present study is the first, to the best of our knowledge, to demonstrate that supplementation of fat grafts with BMSC‑EVs improves the long‑term retention and quality of transplanted fat.

  • FC/FACS
  • Biochemistry and Molecular biology
  • Stem Cells and Developmental Biology

Lysophosphatidic acid does not cause blood/lymphatic vessel plasticity in the rat mesentery culture model.

In Physiological Reports on 1 July 2016 by Sweat, R. S., Azimi, M. S., et al.

Understanding the mechanisms behind endothelial cell identity is crucial for the goal of manipulating microvascular networks. Lysophosphatidic acid (LPA) and serum stimulation have been suggested to induce a lymphatic identity in blood endothelial cells in vitro. The objective of this study was to determine if LPA or serum induces blood-to-lymphatic vessel phenotypic transition in microvascular networks. The rat mesentery culture model was used to observe the effect of stimulation on blood and lymphatic microvascular networks ex vivo. Vascularized mesenteric tissues were harvested from adult Wistar rats and cultured with LPA or 10% serum for up to 5 days. Tissues were then immunolabeled with PECAM to identify blood vessels and LYVE-1 or Prox1 to identify lymphatic vessels. We show that while LPA caused capillary sprouting and increased vascular length density in adult microvascular networks, LPA did not cause a blood-to-lymphatic phenotypic transition. The results suggest that LPA is not sufficient to cause blood endothelial cells to adopt a lymphatic identity in adult microvascular networks. Similarly, serum stimulation caused robust angiogenesis and increased lymphatic/blood vessel connections, yet did not induce a blood-to-lymphatic phenotypic transition. Our study highlights an understudied area of lymphatic research and warrants future investigation into the mechanisms responsible for the maintenance of blood and lymphatic vessel identity.
© 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  • IHC
  • Cardiovascular biology
View this product on CiteAb