Product Citations: 40

Noncanonical STAT3 activity sustains pathogenic Th17 proliferation and cytokine response to antigen.

In The Journal of Experimental Medicine on 5 October 2020 by Poholek, C. H., Raphael, I., et al.

The STAT3 signaling pathway is required for early Th17 cell development, and therapies targeting this pathway are used for autoimmune disease. However, the role of STAT3 in maintaining inflammatory effector Th17 cell function has been unexplored. Th17ΔSTAT3 mice, which delete STAT3 in effector Th17 cells, were resistant to experimental autoimmune encephalomyelitis (EAE), a murine model of MS. Th17 cell numbers declined after STAT3 deletion, corresponding to reduced cell cycle. Th17ΔSTAT3 cells had increased IL-6-mediated phosphorylation of STAT1, known to have antiproliferative functions. Th17ΔSTAT3 cells also had reduced mitochondrial membrane potential, which can regulate intracellular Ca2+. Accordingly, Th17ΔSTAT3 cells had reduced production of proinflammatory cytokines when stimulated with myelin antigen but normal production of cytokines when TCR-induced Ca2+ flux was bypassed with ionomycin. Thus, early transcriptional roles of STAT3 in developing Th17 cells are later complimented by noncanonical STAT3 functions that sustain pathogenic Th17 cell proliferation and cytokine production.
© 2020 Poholek et al.

  • Immunology and Microbiology

Application of allogeneic hematopoietic cell transplantation (allo-HCT) for patients with hematologic disorders is limited by the development of GVHD. Separation of GVHD and graft-versus-leukemia (GVL) remains a great challenge in the field. We investigated the contribution of individual pathways involved in the complement cascade in GVH and GVL responses to identify specific targets by which to separate these two processes.
We used multiple preclinical murine and human-to-mouse xenograft models involving allo-HCT recipients lacking components of the alternative pathway (AP) or classical pathway (CP)/lectin pathway (LP) to dissect the role of each individual pathway in GVHD pathogenesis and the GVL effect. For translational purposes, we used the AP-specific complement inhibitor, CR2-fH, which localizes in injured target organs to allow specific blockade of complement activation at sites of inflammation.
Complement deposition was evident in intestines of mice and patients with GVHD. In a preclinical setting, ablation of the AP, but not the CP/LP, significantly improved GVHD outcomes. Complement activation through the AP in host hematopoietic cells, and specifically dendritic cells (DC), was required for GVHD progression. AP deficiency in recipients decreased donor T-cell migration and Th1/Th2 differentiation, while increasing the generation of regulatory T cells. This was because of decreased activation and stimulatory activity of recipient DCs in GVHD target organs. Treatment with CR2-fH effectively prevented GVHD while preserving GVL activity.
This study highlights the AP as a new therapeutic target to prevent GVHD and tumor relapse after allo-HCT. Targeting the AP by CR2-fH represents a promising therapeutic approach for GVHD treatment.
©2020 American Association for Cancer Research.

  • Cancer Research

A satisfactory cure rate for renal cell carcinoma (RCC) is difficult to achieve through traditional immunotherapy. RCC has a relatively high spontaneous regression rate due to tumor immune escape. However, tumor‑derived exosomes (TEXs), which effectively carry tumor‑associated antigens (TAAs) and trigger stronger antigen‑specific tumor immunity against autologous tumors than against other tumors, have been widely viewed as attractive potential vaccines for tumor treatment, although improvements are needed. Therefore, in our study, we determined whether RenCa cell‑derived exosome (RDE)‑stimulated CD8+ T cells exert a stronger specific cytotoxic effect on autologous tumor cells than on other types of tumor cells through the Fas ligand (FasL)/Fas signaling pathway, and whether the combination of RDE‑stimulated CD8+ T cells with GM‑CSF and IL‑12 enhances the anticancer effect. The results showed that RDEs were isolated, as expected, and promoted an increased percentage of CD8+/CD4+ T cells. RDE‑stimulated CD8+ T cells also more effectively facilitated cytotoxicity against RenCa cells when combined with GM‑CSF and IL‑12 in vitro. Furthermore, immunization with RDEs restrained the growth of RenCa tumors in mouse models, and facilitated the stimulation of a stronger specific cytotoxic CD8+ T cell response via the FasL/Fas signaling pathway in vitro. However, these results were observed less frequently for other types of tumor cells after treatment with RDEs, suggesting that RDEs depend on their antigen specificity to trigger antitumor immune responses. These findings revealed that RDE‑stimulated CD8+ T cells combined with GM‑CSF and IL‑12 can more effectively exert a stronger cytotoxic effect than RDEs alone and that RDEs can induce immunization more effectively against renal cortical adenocarcinoma than against other types of cancer. Therefore, according to our study, exosomes are promising potential vaccines, and the combination of exosome‑stimulated CD8+ T cells with GM‑CSF and IL‑12 may be a novel strategy for the treatment of RCC.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cancer Research
  • Immunology and Microbiology

Nuclear receptor peroxisome proliferator-activated receptor γ (PPAR-γ) activation can prevent immunoinflammatory disorders and diabetes. B cells play protective roles during inflammation as well. However, the roles of endogenous PPAR-γ in the regulatory properties of B cells to relieve inflammation remain unknown. Here, we developed B-cell-specific PPAR-γ knockout (B-PPAR-γ-/- ) mice and found that the conditional deletion of PPAR-γ in B cells resulted in exaggerated contact hypersensitivity (CHS). Meanwhile, interferon-γ (IFN-γ) of CD4+ CD8+ T cells was up-regulated in B-PPAR-γ-/- mice in CHS. This showed that the regulatory function of B cells in B-PPAR-γ-/- mice declined in vivo. Whereas splenic CD5+ CD1dhi regulatory B-cell numbers and peripheral regulatory T-cell numbers were not changed in naive B-PPAR-γ-/- mice. Loss of PPAR-γ in B cells also did not affect either CD86 or FasL expression in splenic CD5+ CD1dhi regulatory B cells after activation. Notably, interleukin-10 (IL-10) production in CD5+ CD1dhi regulatory B cells reduced in B-PPAR-γ-deficient mice. In addition, functional IL-10-producing CD5+ CD1dhi regulatory B cells decreased in B-PPAR-γ-/- mice in the CHS model. These findings were in accordance with augmented CHS. The current work indicated the involvement of endogenous PPAR-γ in the regulatory function of B cells by disturbing the expansion of IL-10-positive regulatory B cells.
© 2018 John Wiley & Sons Ltd.

  • Cell Biology
  • Immunology and Microbiology

Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors.

In Blood on 7 January 2016 by Canli, O., Alankuş, Y. B., et al.

Maintaining cellular redox balance is vital for cell survival and tissue homoeostasis because imbalanced production of reactive oxygen species (ROS) may lead to oxidative stress and cell death. The antioxidant enzyme glutathione peroxidase 4 (Gpx4) is a key regulator of oxidative stress-induced cell death. We show that mice with deletion of Gpx4 in hematopoietic cells develop anemia and that Gpx4 is essential for preventing receptor-interacting protein 3 (RIP3)-dependent necroptosis in erythroid precursor cells. Absence of Gpx4 leads to functional inactivation of caspase 8 by glutathionylation, resulting in necroptosis, which occurs independently of tumor necrosis factor α activation. Although genetic ablation of Rip3 normalizes reticulocyte maturation and prevents anemia, ROS accumulation and lipid peroxidation in Gpx4-deficient cells remain high. Our results demonstrate that ROS and lipid hydroperoxides function as not-yet-recognized unconventional upstream signaling activators of RIP3-dependent necroptosis.
© 2016 by The American Society of Hematology.

  • FC/FACS
  • Mus musculus (House mouse)
  • Cardiovascular biology
View this product on CiteAb