Product Citations: 5

Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance.

In Nature Communications on 28 February 2020 by Martens, R., Permanyer, M., et al.

Little is known regarding lymph node (LN)-homing of immune cells via afferent lymphatics. Here, we show, using a photo-convertible Dendra-2 reporter, that recently activated CD4 T cells enter downstream LNs via afferent lymphatics at high frequencies. Intra-lymphatic immune cell transfer and live imaging data further show that activated T cells come to an instantaneous arrest mediated passively by the mechanical 3D-sieve barrier of the LN subcapsular sinus (SCS). Arrested T cells subsequently migrate randomly on the sinus floor independent of both chemokines and integrins. However, chemokine receptors are imperative for guiding cells out of the SCS, and for their subsequent directional translocation towards the T cell zone. By contrast, integrins are dispensable for LN homing, yet still contribute by increasing the dwell time within the SCS and by potentially enhancing T cell sensing of chemokine gradients. Together, these findings provide fundamental insights into mechanisms that control homing of lymph-derived immune cells.

  • Immunology and Microbiology

A cell-extrinsic ligand acquired by activated T cells in lymph node can bridge L-selectin and P-selectin.

In PLoS ONE on 1 November 2018 by Carlow, D. A., Tra, M. C., et al.

P-selectin expressed on activated endothelia and platelets supports recruitment of leukocytes expressing P-selectin ligand to sites of inflammation. While monitoring P-selectin ligand expression on activated CD8+ T cells in murine adoptive transfer models, we observed two distinct ligands on responding donor cells, the canonical cell-intrinsic P-selectin ligand PSGL-1 and a second undocumented P-selectin ligand we provisionally named PSL2. PSL2 is unusual among selectin ligands in that it is cell-extrinsic, loaded onto L-selectin expressed by activated T cells but not L-selectin on resting naïve CD8+ T cells. PSL2 display is highest on activated T cells responding in peripheral lymph nodes and low on T cells responding in spleen suggesting that the original source of PSL2 is high endothelial venules, cells known to produce L-selectin ligands. PSL2 is a ligand for both P-selectin and L-selectin and can physically bridge the two selectins. The L-selectin/PSL2 complex can mediate P-selectin-dependent adherence of activated T cells to immobilized P-selectin or to activated platelets, either independently or cooperatively with PSGL-1. PSL2's capacity to bridge between L-selectin on activated T cells and P-selectin reveals an undocumented and unanticipated activity of cell-extrinsic selectin ligands in mediating selectin-selectin connectivity. The timing and circumstances of PSL2 detection on T cells, together with its capacity to support adherence to P-selectin-bearing substrates, are consistent with P-selectin engagement of both PSGL1 and the L-selectin/PSL2 complex during T cell recruitment. Engagement of PSGL-1 and L-selectin/PSL2 would likely deliver distinct signals known to be relevant in this process.

  • FC/FACS
  • Immunology and Microbiology

T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus-specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7-/- effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7-/- CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells.
Copyright © 2018 by The American Association of Immunologists, Inc.

  • FC/FACS
  • Immunology and Microbiology

Interactions of endothelial selectins with tumour cell glycoconjugates have been shown to have a major role in tumour cell dissemination in previous experiments. However, experiments validating this observation were limited in value, as 'metastases' in these experiments were artificially induced by i.v. injection rather than developed spontaneously as in true metastases.
Endothelial (E) and platelet (P)-selectin-deficient severe combined immunodeficient (scid) mice were generated and human HT 29 colon cancer cells were subcutaneously inoculated in these mice and in wild-type scid mice. Tumour growth, spontaneous metastasis formation in the lung and adherence of HT29 cells to E- and P-selectin under flow were determined.
The number of metastases decreased by 84% in E- and P-selectin-deficient scid mice, compared with wild-type scid mice. The remaining 16% metastases in the E- and P-selectin-deficient scid mice grew within the pulmonary artery and not in the alveolar septae as they did in wild-type scid mice. Flow experiments indicate that tumour cells roll and tether on an E- and P-selectin matrix similar to leukocytes; however, firm adhesion is mainly mediated in E-selectin.
Our results indicate that E- and P-selectins have a crucial role in spontaneous metastasis formation. As the human HT 29 colon cancer cells are positive for the lectin Helix pomatia agglutinin (HPA), which identified the metastatic phenotype in earlier clinical studies, these results are of particular clinical relevance.

  • IHC
  • Cancer Research

The cytoplasmic domain of tissue factor in macrophages augments cutaneous delayed-type hypersensitivity.

In Journal of Leukocyte Biology on 1 April 2008 by Apostolopoulos, J., Hickey, M. J., et al.

In addition to its procoagulant role, tissue factor (TF) has important coagulation-independent roles, including in inflammation. The cytoplasmic domain of TF has been implicated in some of these coagulation-independent roles, particularly cell signaling. To assess the contribution of the cytoplasmic domain of TF to cell-mediated adaptive immunity, the development of cutaneous delayed-type hypersensitivity (DTH) was studied in mice lacking the cytoplasmic domain of TF (TF(deltaCT/deltaCT) mice). DTH responses in sensitized mice were significantly attenuated in TF(deltaCT/deltaCT) mice, and leukocyte-endothelial cell interactions, assessed by intravital microscopy, were impaired significantly. Studies in chimeric mice, created by bone marrow transplantation, showed that the absence of the cytoplasmic domain of TF in leukocytes rather than endothelial cells was responsible for reduced DTH and leukocyte recruitment. DTH responses to OVA could be induced in wild-type mice but not in TF(deltaCT/deltaCT) mice by transfer of activated CD4(+) OVA-specific TCR transgenic T cells, demonstrating that the defective DTH response in TF(deltaCT/deltaCT) mice was independent of any defect in T cell activation. Macrophage and neutrophil accumulation and expression of TNF-alpha mRNA and phospho-p38-MAPK were reduced significantly in TF(deltaCT/deltaCT) mice, and their macrophages had reduced P-selectin-binding capacity and reduced in vivo emigration in response to MCP-1. These results indicate that leukocyte expression of the cytoplasmic domain of TF contributes to antigen-specific cellular adaptive immune responses via effects on leukocyte recruitment and activation.

  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb