Product Citations: 4

Microglial MHC-I induction with aging and Alzheimer’s is conserved in mouse models and humans

Preprint on BioRxiv : the Preprint Server for Biology on 10 March 2023 by Kellogg, C. M., Pham, K., et al.

Major Histocompatibility Complex I (MHC-I) function in the CNS is still being determined after previously being thought to be absent from the brain. MHC-I expression increases with brain aging in mouse, rat, and human whole tissue analyses. Neuronal MHC-I expression has been proposed to regulate developmental synapse elimination and tau pathology in Alzheimer’s disease (AD). However, the CNS cellular localization of MHC-I expression has been unclear. Across newly generated and publicly available ribosomal profiling, cell sorting, and single cell data, microglia were found to be the primary source of classical and non-classical MHC-I in mice and humans. TRAP-qPCR analysis of 3-6 m.o. and 18-22 m.o. mice revealed significant age-related induction of B2m, H2-D1, H2-K1, H2-M3, H2-Q6, and Tap1 in microglia but not in astrocytes and neurons. Across a timecourse from 12-23 m.o., microglial MHC-I gradually increases until 21 m.o. and then accelerates. MHC-I protein was also enriched in microglia and increased with aging. Expression of MHC-I binding Leukocyte Immunoglobulin-like (Lilr) and Paired immunoglobin-like type 2 (Pilr) receptors in microglia but not astrocytes or neurons opens the possibility of cell-autonomous signaling and are also increased with aging in mice and humans. Increased microglial MHC-I, Lilrs, and Pilrs were observed in mouse AD models and human data across numerous studies and in RNA-Seq of microglia from APP-PSEN1 mice. MHC-I expression occurred concurrently with p16 suggesting an association with cellular senescence. The conserved induction of MHC-I, Lilrs, and Pilrs with aging and AD open the possibility of cell-autonomous signaling to regulate microglial reactivation.

  • Mus musculus (House mouse)
  • Immunology and Microbiology
  • Neuroscience

Anlotinib has achieved good results in clinical trials of a variety of cancers. However, the effects of anlotinib on the tumor microenvironment (TME) and systemic immunity have not been reported. There is an urgent need to identify the underlying mechanism to reveal new opportunities for its application in neuroblastoma (NB) and other cancers. Understanding the mechanism will hopefully achieve the goal of using the same method to treat different cancers.
This study used bioinformatics, NB syngeneic mouse models, flow cytometry, RNA-seq, and immunofluorescence staining to explore the mechanisms of anlotinib on the TME, and further explored anlotinib-containing combination treatment strategies.
We proved that anlotinib facilitates tumor vessel normalization at least partially through CD4+ T cells, reprograms the immunosuppressive TME into an immunostimulatory TME, significantly inhibits tumor growth, and effectively prevents systemic immunosuppression. Moreover, the combination of anlotinib with a PD-1 checkpoint inhibitor counteracts the immunosuppression caused by the upregulation of PD-L1 after monotherapy, extends the period of vascular normalization, and finally induces NB regression.
To our knowledge, this study is the first to dynamically evaluate the effect of a multitarget antiangiogenic tyrosine kinase inhibitor on the TME. These findings have very important clinical value in guiding the testing of related drugs in NB and other cancers. Based on these findings, we are conducting a phase II clinical study (NCT04842526) on the efficacy and safety of anlotinib, irinotecan, and temozolomide in the treatment of refractory or relapsed NB, and hopefully we will observe patient benefit.
©2021 The Authors; Published by the American Association for Cancer Research.

  • Cancer Research
  • Immunology and Microbiology

The partial dissociation of MHC class I-bound peptides exposes their N terminus to trimming by endoplasmic reticulum aminopeptidase 1.

In The Journal of Biological Chemistry on 18 May 2018 by Papakyriakou, A., Reeves, E., et al.

Endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2 process N-terminally extended antigenic precursors for optimal loading onto major histocompatibility complex class I (MHC I) molecules. We and others have demonstrated that ERAP1 processes peptides bound to MHC I, but the underlying mechanism is unknown. To this end, we utilized single-chain trimers (SCT) of the ovalbumin-derived epitope SIINFEKL (SL8) tethered to the H2-Kb MHC I determinant from mouse and introduced three substitutions, E63A, K66A, and W167A, at the A-pocket of the peptide-binding groove in the MHC I heavy chain, which interact with the N termini of peptides. These variants significantly decreased SL8-presenting SCT at the cell surface in the presence of ERAP1, but did not affect overall SCT expression, indicating that ERAP1 trims the SL8 N terminus. Comparison of the X-ray crystal structures of WT and three variant SCTs revealed only minor perturbations of the peptide-binding domain in the variants. However, molecular dynamics simulations suggested that SL8 can dissociate partially within a sub-microsecond timescale, exposing its N terminus to the solvent. We also found that the C terminus of MHC I-bound SL8 remains deeply buried in the F-pocket of MHC I. Furthermore, free-energy calculations revealed that the three SCT variants exhibit lower free-energy barriers of N terminus dissociation than the WT Kb Taken together, our results are consistent with a previously observed model in which the partial dissociation of bound peptides from MHC I exposes their N terminus to trimming by ERAP1, whereas their C terminus is anchored at the F-pocket.
© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Genetic and phenotypic characterization of the novel mouse substrain C57BL/6N Korl with increased body weight.

In Scientific Reports on 27 October 2017 by Choi, K. M., Jung, J., et al.

In inbred mouse lines, there is generally little genetic difference between individuals. This small genetic variability facilitates carrying out research on minute changes of various traits and the gene pool. Also, characterizing the diversity and detecting selective genetic and phenotypic signatures are crucial to understanding the genomic basis of a population and to identify specific patterns of evolutionary change. In this study, we investigated the underlying genetic profiles of a newly developed mouse strain, C57BL/6NKorl (Korl), established through sibling mating over 30 generations. To analyse the distinctive genomic features of Korl mice, we used whole-genome sequencing from six samples, which were compared to those of other C57BL/6N-based mouse strains. Korl strain-specific polymorphisms were identified and signatures of a selective sweep were detected. In particular, the candidate genes related to the increased body weight of the Korl strain were identified. Establishment of the genetic profile of Korl mice can provide insight into the inbreeding-induced changes to the gene pool, and help to establish this strain as a useful model for practical and targeted research purposes.

  • Mus musculus (House mouse)
  • Genetics
View this product on CiteAb