Product Citations: 294

2 images found

Guselkumab binding to CD64+ IL-23-producing myeloid cells enhances potency for neutralizing IL-23 signaling.

In Frontiers in Immunology on 27 March 2025 by Sachen, K. L., Hammaker, D., et al.

IL-23 is implicated in the pathogenesis of immune-mediated inflammatory diseases, and myeloid cells that express Fc gamma receptor 1 (FcγRI or CD64) on their surface have been recently identified as a primary source of IL-23 in inflamed tissue. Our complementary analyses of transcriptomic datasets from psoriasis and IBD showed increased expression of CD64 and IL-23 transcripts in inflamed tissue, and greater abundance of cell types with co-expression of CD64 and IL-23. These findings led us to explore potential implications of CD64 binding on the function of IL-23-targeting monoclonal antibodies (mAbs). Guselkumab and risankizumab are mAbs that target the IL-23p19 subunit. Guselkumab has a native Fc domain while risankizumab contains mutations that diminish binding to FcγRs. In flow cytometry assays, guselkumab, but not risankizumab, showed Fc-mediated binding to CD64 on IFNγ-primed monocytes. Guselkumab bound CD64 on IL-23-producing inflammatory monocytes and simultaneously captured IL-23 secreted from these cells. Guselkumab binding to CD64 did not induce cytokine production. In live-cell confocal imaging of CD64+ macrophages, guselkumab, but not risankizumab, mediated IL-23 internalization to low-pH intracellular compartments. Guselkumab and risankizumab demonstrated similar potency for inhibition of IL-23 signaling in cellular assays with exogenous addition of IL-23. However, in a co-culture of IL-23-producing CD64+ THP-1 cells with an IL-23-responsive reporter cell line, guselkumab demonstrated Fc-dependent enhanced potency compared to risankizumab for inhibiting IL-23 signaling. These in vitro data highlight the potential for guselkumab binding to CD64 in inflamed tissue to contribute to the potent neutralization of IL-23 at its cellular source.
Copyright © 2025 Sachen, Hammaker, Sarabia, Stoveken, Hartman, Leppard, Manieri, Bao, Greving, Lacy, DuPrie, Wertheimer, Deming, Brown, Hart, Li, Freeman, Keyes, Kohler, White, Karpowich, Steele, Elloso, Fakharzadeh, Goyal, Lavie, Abreu, Allez, Atreya, Bissonnette, Eyerich, Krueger, McGonagle, McInnes, Ritchlin and Fourie.

  • Immunology and Microbiology

Flow cytometry characterization of antigen-specific polyfunctional T cells is a valuable tool to study adaptive immunity. Here, we present a protocol for flow cytometry immunophenotyping of human antigen-specific T cells by activation-induced marker (AIM) and Th1 cytokine detection. We describe steps for preparing peripheral blood mononuclear cells (PBMCs) for stimulation followed by washing and staining PBMCs for flow cytometry. We then detail procedures for acquisition and analysis. This protocol has potential applications in the field of vaccine immunology and immuno-oncology. For complete details on the use and execution of this protocol, please refer to Altosole et al.1.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Recent studies have shown that CD32/CD8a/CD28/CD3ζ chimeric receptor cells directly kill breast cancer cells, suggesting the existence of cell surface myeloid FcγR alternative ligands (ALs). Here, we investigated the metabolism, ALs, cytotoxicity, and immunoregulatory functions of CD64/CD28/CD3ζ in colorectal cancer (CRC) and squamous cell carcinoma of the head and neck.
The CD64/CD28/CD3ζ -SFG retroviral vector was used to produce viruses for T-cell transduction. T-cell expansion and differentiation were monitored via flow cytometry. Gene expression was assessed by RNA-seq. Bioenergetics were documented on a Seahorse extracellular flux analyzer. CD64/CD28/CD3ζ polarization was identified via confocal microscopy. Cytotoxicity was determined by MTT assay and bioluminescent imaging, and flow cytometry. Tridimensional antitumor activity of CD64/CD28/CD3ζ T cells was achieved by utilizing HCT116-GFP 3D spheroids via the IncuCyte S3 Live-Cell Analysis system. The intraperitoneal distribution and antitumor activity of NIR-CD64/CD28/CD3ζ and NIR-nontransduced T cells were investigated in CB17-SCID mice bearing subcutaneous FaDu Luc + cells by bioluminescent and fluorescent imaging. IFNγ was assessed by ELISA.
Compared to CD16/CD8a/CD28/CD3ζ T cells, CD32/CD8a/CD28/CD3ζ T cells, and non-transduced T cells, CD64/CD28/CD3ζ T cells exhibited the highest levels of cell expansion and persistence capacity. A total of 235 genes linked to cell division and 52 genes related to glycolysis were overexpressed. The glycolytic phenotype was confirmed by functional in vitro studies accompanied by preferential T-cell effector memory differentiation. Interestingly, oxamic acid was found to inhibit CD64-CR T cell proliferation, indicating the involvement of lactate. Upon CD64/CD28/CD3ζ T-cell conjugation with CRC cells, CD64/CD28/CD3ζ cells polarize at immunological synapses, leading to CRC cell death. CD64/CD28/CD3ζ T cells kill SCCHN cells, and in combination with the anti-B7-H3 mAb (376.96) or anti-EGFR mAb, these cells trigger antibody-dependent cellular cytotoxicity (ADCC) in vitro under 2D and 3D conditions. The 376.96 mAb combined with CD64/CD28/CD3ζ T cells had anti-SCCHN activity in vivo. In addition, they induce the upregulation of PD-L1 and HLA-DR expression in cancer cells via IFNγ. PD-L1 positive SCCHN cells in combination with anti-PD-L1 mAb and CD64-CR T cells were killed by ADCC, which enhanced direct cytotoxicity. These findings indicate that the glycolytic phenotype is involved in CD64-CR T cell proliferation/expansion. These cells mediate long-lasting HLA-independent cytotoxicity and ADCC in CRC and SCCHN cells.
CD64/CD28/CD3ζ T cells could significantly impact the rational design of personalized studies to treat CRC and SCCHN and the identification of novel FcγR ALs in cancer and healthy cells.
© 2025. The Author(s).

  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.
We used an unbiased screening approach of T cell resistant and sensitive murine KPC (KrasLSL-G12D/+; Trp53fl/fl; Ptf1aCre/+ ) PDAC cells in a three-dimensional co-culture platform with syngeneic antigen-educated T cells to identify potential cell-intrinsic drivers of T cell suppression in PDAC. Comparative transcriptomic analysis was performed to reveal promising candidates that mediate resistance to T cells. We investigated their contribution by shRNA-mediated knockdown and pharmacological inhibition in murine in vitro and in vivo studies, as well as in patient-derived organoids (PDOs). A combination of transcriptomic analyses, cytometric and immunohistochemistry techniques allowed us to validate the underlying T cell response phenotypes of PDAC cells. The action of TGM2 via interaction with tubulin and the impact of microtubule dynamics and vesicle trafficking were evaluated by protein analyses and live-cell imaging. Correlation analyses via TCGA data complemented the functional studies.
We identified transglutaminase 2 (TGM2) as a mediator of T cell suppression in PDAC. We report that high levels of TGM2 expression in patients' tumors correlate with immunosuppressive signatures and poor overall survival. We found that TGM2 regulates vesicle trafficking by modulating microtubule network density and dynamics in pancreatic cancer cells, thus facilitating the secretion of immunosuppressive cytokines, which impair effector T cell functionality. In TGM2-expressing PDOs, pharmacological TGM2 inhibition or treatment with nocodazole increased T cell-mediated apoptosis. Also, pretreatment of TGM2high PDOs with sublethal doses of the spindle poisons paclitaxel or vincristine increased CD8+T cell activation and sensitized PDOs toward T cell-mediated cytotoxicity.
These findings indicate that targeting microtubular function therapeutically may enhance antitumor T cell responses by impacting activity of immunosuppressive cytokines in the PDAC microenvironment.
© Author(s) (or their employer(s)) 2025. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ Group.

  • Cancer Research
  • Immunology and Microbiology

Abstract Background Recent studies have shown that CD32/CD8a/CD28/CD3ζ chimeric receptor cells directly kill breast cancer cells, suggesting the existence of cell surface myeloid FcγR alternative ligands (ALs). Here, we investigated the metabolism, ALs, cytotoxicity, and immunoregulatory functions of CD64/CD28/CD3ζ in colorectal cancer (CRC) and squamous cell carcinoma of the head and neck. Methods The CD64/CD28/CD3ζ -SFG retroviral vector was used to produce viruses for T-cell transduction. T-cell expansion and differentiation were monitored via flow cytometry. Gene expression was assessed by RNA-seq. Bioenergetics were documented on a Seahorse extracellular flux analyzer. CD64/CD28/CD3ζ polarization was identified via confocal microscopy. Cytotoxicity was determined by MTT assay and bioluminescent imaging. Tridimensional antitumor activity of CD64/CD28/CD3ζ T cells was achieved by utilizing HCT116-GFP 3-D spheroids via the IncuCyte S3 Live-Cell Analysis system. The intraperitoneal distribution and antitumor activity of NIR-CD64/CD28/CD3ζ and NIR-nontransduced T cells were investigated in CB17-SCID mice bearing subcutaneous FaDu Luc + cells by bioluminescent and fluorescent imaging. IFNγ was assessed by ELISA. Results Compared to CD16/CD8a/CD28/CD3ζ T cells, CD32/CD8a/CD28/CD3ζ T cells, and nontransduced T cells, CD64/CD28/CD3ζ T cells exhibited the highest levels of cell expansion and persistence capacity. A total of 235 genes linked to cell division and 52 genes related to glycolysis were overexpressed. The glycolytic phenotype was confirmed by functional in vitro studies accompanied by preferential T-cell effector memory differentiation. Upon CD64/CD28/CD3ζ T-cell conjugation with CRC cells, CD64/CD28/CD3ζ cells polarize at immunological synapses, leading to CRC cell death. CD64/CD28/CD3ζ T cells kill SCCHN cells, and in combination with the anti-B7-H3 mAb (376.96) or anti-EGFR mAb, these cells trigger ADCC in vitro under 2D and 3D conditions. The 376.96 mAb combined with CD64/CD28/CD3ζ T cells had anti-SCCHN activity in vivo. In addition, they induce the upregulation of PD-L1 and HLA-DR expression on cancer cells via IFNγ. PD-L1 upregulation resulted in the generation of ADCC, which enhanced direct cytotoxicity. These findings indicate that, despite the glycolytic phenotype, these cells mediate long-lasting HLA-independent cytotoxicity and ADCC in CRC and SCCHN cells. Conclusions CD64/CD28/CD3ζ T cells could significantly impact the rational design of personalized studies to treat CRC and HNSCC and the identification of novel FcγR ALs in cancer and healthy cells.

  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb