Product Citations: 156

Hepatocellular carcinoma (HCC) resists immunotherapy due to its immunosuppressive microenvironment. Sarcoma homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) inhibits T cell receptor signaling, and its pharmacological inhibition is limited by poor selectivity and membrane permeability. Here, we generated CRISPR-edited SHP-1-knockout (KO) CD8+ T cells to enhance adoptive therapy against HCC. Single-cell RNA sequencing of HCC patient T cells revealed elevated SHP-1 in exhausted subsets. SHP-1-KO T cells exhibited increased effector memory T cells (TEM) proportions and enhanced IFN-γ/Granzyme B/perforin secretion, improving cytotoxicity against HCC lines. In humanized PDX models, SHP-1-KO T cells demonstrated superior tumor-killing activity. Transcriptomics identified upregulated lipid metabolism pathways, with HMGCR as a hub gene. Combining SHP-1-KO T cells with simvastatin (HMGCR inhibitor) synergistically amplified anti-HCC efficacy. This study proposes a dual strategy combining SHP-1-targeted cell therapy and metabolic modulation to overcome immunotherapy resistance, offering a translatable approach for HCC treatment.
© 2025 The Author(s).

  • Cancer Research

Investigating T-cell-derived extracellular vesicles as biomarkers of disease activity, axonal injury, and disability in multiple sclerosis.

In Clinical and Experimental Immunology on 21 January 2025 by Zagrodnik, J. L., Blandford, S. N., et al.

Multiple sclerosis (MS) is a chronic immune-mediated demyelinating disease of the central nervous system, whereby clinical disease activity is primarily monitored by magnetic resonance imaging.
Given the limitations associated with implementing and acquiring novel and emerging imaging biomarkers in routine clinical practice, the discovery of biofluid biomarkers may offer a more simple and cost-effective measure that would improve accessibility, standardization, and patient care. Extracellular vesicles (EVs) are nanoparticles secreted from cells under both homeostatic and pathological states, and have been recently investigated as biomarkers in MS. The objectives of this study were to longitudinally measure levels of specific immune cell-derived EVs in MS and provide evidence that EV sub-populations may serve as biomarkers of disease activity, axonal injury, and/or clinical disability.
Our results demonstrate that the rate of clinical disability in MS negatively correlates with changes in circulating CD3+ EVs within the plasma. Additionally, numbers of CD4+ EVs decrease in individuals with increasing pNfL levels overtime whereby the magnitude of the pNfL increase negatively correlates with changes in plasma CD4+ and CD8+ EVs. Finally, when applying NEDA-3 criteria to define active versus stable disease, individuals with active disease had significantly elevated CD4+ and CD8+ EVs compared to stable disease.
In summary, the analysis of specific immune cell-derived EV subsets may provide a method to monitor disability accumulation, disease activity, and axonal injury in MS, while also providing insights into the pathophysiology and cellular/molecular mechanisms that influence progression.
© The Author(s) 2025. Published by Oxford University Press on behalf of the British Society for Immunology.

  • Immunology and Microbiology

γδ T Are Significantly Impacted by CLL Burden but Only Mildly Influenced by M-MDSCs.

In Cancers on 14 January 2025 by Zarobkiewicz, M., Kowalska, W., et al.

The current study explores the impact of CLL on γδ T cells and, in an attempt to better understand the sources of immunosuppression, assesses the impact of M-MDSCs on γδ T cells in vitro.
The study included 163 CLL patients and 34 healthy volunteers. γδ T cells were screened with flow cytometry, including NKG2D, Fas, FasL, and TRAIL staining. Additionally, to deepen understanding of the immunosuppressive impact of CLL on γδ T, a set of in vitro co-cultures of γδ T and M-MDSCs was performed.
RNAseq revealed significant, though relatively minor, changes in the transcriptome. Functional analyses showed a minor drop in cytotoxic potential against CLL cells. Finally, depletion of M-MDSCs from CLL-derived peripheral blood mononuclear cells did not restore γδ T cells' proliferative response.
Altogether, this suggests a minor impact of M-MDSCs on activated γδ T. Thus, it seems probable that other mechanisms than M-MDSCs mediate the negative impact of CLL on circulating γδ T cells.

  • Homo sapiens (Human)
  • Cancer Research

HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer.

In Oncoimmunology on 31 December 2024 by Matsumoto, S., Tsujikawa, T., et al.

Neoantigen-reactive CD4+ T cells play a key role in the anti-tumor immune response. However, the majority of epithelial tumors are negative for HLA class II (HLA-II) surface expression, and less is known about the processing of HLA-II antigens. Here, we directly identified naturally presented HLA-II neoantigens in HLA-II negative colorectal cancer (CRC) tissue using a proteogenomic approach. The neoantigens were immunogenic and induced patient CD4+ T cells with a Th1-like memory phenotype that produced IFN-γ, IL2 and TNF-α. Multiplex immunohistochemistry (IHC) demonstrated an interaction between Th cells and HLA-II-positive antigen-presenting cells (APCs) at the invasive margin and within the tertiary lymphoid structures (TLS). In our CRC cohort, the density of stromal APCs was associated with HLA-II antigen presentation in the tumor microenvironment (TME), and the number of TLS was positively correlated with the number of somatic mutations in the tumors. These results demonstrate the presence of neoantigen-specific CD4+ surveillance in HLA-II-negative CRC and suggest a potential role for macrophages and dendritic cells (DCs) at the invasive margin and in TLS for antigen presentation. Stromal APCs in the TME can potentially be used as a source for HLA-II neoantigen identification.

  • Cancer Research
  • Immunology and Microbiology

Integrative single-cell multi-omics of CD19-CARpos and CARneg T cells suggest drivers of immunotherapy response in B cell neoplasias.

In Cell Reports Medicine on 19 November 2024 by Guerrero-Murillo, M., Rill-Hinarejos, A., et al.

The impact of phenotypic, clonal, and functional heterogeneity of chimeric antigen receptor (CAR)-T cells on clinical outcome remains understudied. Here, we integrate clonal kinetics with transcriptomic heterogeneity resolved by single-cell omics to interrogate cellular dynamics of non-transduced (CARneg) and transduced (CARpos) T cells, in the infusion product (IP) and at the CAR-T cell expansion peak in five B cell acute lymphoblastic leukemia (B-ALL) patients treated with CD19CAR-T cells (varni-cel). We identify significant differences in cellular dynamics in response to therapy. CARpos T cells at IP of complete response patients exhibit a significantly higher CD4:CD8 ratio, validated in a larger cohort B-ALL patients (n = 47). Conversely, at the expansion peak, there is a clonal expansion of CD8+ effector memory and cytotoxic T cells. Cytotoxic CARpos γδ-T cells expansion correlates with treatment efficacy validated in a cohort of B-ALL (n = 18) and diffuse large B cell lymphoma (DLBCL) patients (n = 58). Our data provide insights into the complexity of T cell responses following CAR-T cell therapy and suggest drivers of immunotherapy response.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology
View this product on CiteAb