Product Citations: 5

Detection of early seeding of Richter transformation in chronic lymphocytic leukemia.

In Nature Medicine on 1 August 2022 by Nadeu, F., Royo, R., et al.

Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high-B cell receptor (BCR)low-signaling transcriptional axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seeding of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.
© 2022. The Author(s).

  • Cancer Research

Prognostic Value of Tie2-Expressing Monocytes in Chronic Lymphocytic Leukemia Patients.

In Cancers on 5 June 2021 by Woś, J., Chocholska, S., et al.

Tie2-expressing monocytes (TEMs) are associated with tumor progression and metastasis. This unique subset of monocytes has been identified as a potential prognostic marker in several solid tumors. However, TEMs remain poorly characterized in hematological cancers, including chronic lymphocytic leukemia (CLL). This study analyzed, for the first time, the clinical significance of TEM population in CLL patients. Flow cytometry analysis of TEMs (defined as CD14+CD16+Tie2+ cells) was performed at the time of diagnosis on peripheral blood mononuclear cells from 104 untreated CLL patients. Our results revealed an expansion of circulating TEM in CLL patients. These monocytes express high levels of VEGF and suppressive IL-10. A high percentage of TEM was associated closely with unfavorable prognostic markers (ZAP-70, CD38, 17p and 11q deletion, and IGHV mutational status). Moreover, increased percentages of circulating TEMs were significantly higher in patients not responding to the first-line therapy as compared to responding patients, suggesting its potential predictive value. High TEM percentage was also correlated with shorter overall survival (OS) and shorter time to treatment (TTT). Importantly, based on multivariate Cox regression analysis, TEM percentage was an independent predictor for TTT. Thus, we can suggest the adverse role of TEMs in CLL.

  • FC/FACS
  • Cancer Research

Key Features Relevant to Select Antigens and TCR From the MHC-Mismatched Repertoire to Treat Cancer.

In Frontiers in Immunology on 19 July 2019 by Audehm, S., Glaser, M., et al.

Adoptive transfer of T cells transgenic for tumor-reactive T-cell receptors (TCR) is an attractive immunotherapeutic approach. However, clinical translation is so far limited due to challenges in the identification of suitable target antigens as well as TCRs that are concurrent safe and efficient. Definition of key characteristics relevant for effective and specific tumor rejection is essential to improve current TCR-based adoptive T-cell immunotherapies. We here characterized in-depth two TCRs derived from the human leukocyte antigen (HLA)-mismatched allogeneic repertoire targeting two different myeloperoxidase (MPO)-derived peptides presented by the same HLA-restriction element side by side comprising state of the art biochemical and cellular in vitro, in vivo, and in silico experiments. In vitro experiments reveal comparable functional avidities, off-rates, and cytotoxic activities for both TCRs. However, we observed differences especially with respect to cytokine secretion and cross-reactivity as well as in vivo activity. Biochemical and in silico analyses demonstrate different binding qualities of MPO-peptides to the HLA-complex determining TCR qualities. We conclude from our biochemical and in silico analyses of peptide-HLA-binding that rigid and high-affinity binding of peptides is one of the most important factors for isolation of TCRs with high specificity and tumor rejection capacity from the MHC-mismatched repertoire. Based on our results, we developed a workflow for selection of such TCRs with high potency and safety profile suitable for clinical translation.

  • Cancer Research
  • Immunology and Microbiology

When examining datasets of any dimensionality, researchers frequently aim to identify individual subsets (clusters) of objects within the dataset. The ubiquity of multidimensional data has motivated the replacement of user-guided clustering with fully automated clustering. The fully automated methods are designed to make clustering more accurate, standardized and faster. However, the adoption of these methods is still limited by the lack of intuitive visualization and cluster matching methods that would allow users to readily interpret fully automatically generated clusters. To address these issues, we developed a fully automated subset identification and characterization (SIC) pipeline providing robust cluster matching and data visualization tools for high-dimensional flow/mass cytometry (and other) data. This pipeline automatically (and intuitively) generates two-dimensional representations of high-dimensional datasets that are safe from the curse of dimensionality. This new approach allows more robust and reproducible data analysis,+ facilitating the development of new gold standard practices across laboratories and institutions.

  • FC/FACS
  • Homo sapiens (Human)

Exonal switch down-regulates the expression of CD5 on blasts of acute T cell leukaemia.

In Clinical and Experimental Immunology on 1 December 2017 by Rai, A. K., Singh, A., et al.

To date, CD5 expression and its role in acute T cell lymphoblastic leukaemia (T-ALL) have not been studied closely. We observed a significant reduction in surface expression of CD5 (sCD5) on leukaemic T cells compared to autologous non-leukaemic T cells. In this study, we have shown the molecular mechanism regulating the expression and function of CD5 on leukaemic T cells. A total of 250 patients suffering from leukaemia and lymphoma were immunophenotyped. Final diagnosis was based on their clinical presentation, morphological data and flow cytometry-based immunophenotyping. Thirty-nine patients were found to be of ALL-T origin. Amplification of early region of E1A and E1B transcripts of CD5 was correlated with the levels of surface and intracellular expression of CD5 protein. Functional studies were performed to show the effect of CD5 blocking on interleukin IL-2 production and survival of leukaemic and non-leukaemic cells. Lack of expression of sCD5 on T-ALL blasts was correlated closely with predominant transcription of exon E1B and significant loss of exon E1A of the CD5 gene, which is associated with surface expression of CD5 on lymphocytes. High expression of E1B also correlates with increased expression of cytoplasmic CD5 (cCD5) among leukaemic T cells. Interestingly, we observed a significant increase in the production of IL-2 by non-leukaemic T cells upon CD5 blocking, leading possibly to their increased survival at 48 h. Our study provides understanding of the regulation of CD5 expression on leukaemic T cells, and may help in understanding the molecular mechanism of CD5 down-regulation.
© 2017 British Society for Immunology.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb