Product Citations: 17

SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4.

In The Journal of Experimental Medicine on 5 April 2021 by Onodi, F., Bonnet-Madin, L., et al.

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
© 2021 Onodi et al.

  • COVID-19

SOX17 has been implicated in arterial specification and the maintenance of hematopoietic stem cells (HSCs) in the murine embryo. However, knowledge about molecular pathways and stage-specific effects of SOX17 in humans remains limited. Here, using SOX17-knockout and SOX17-inducible human pluripotent stem cells (hPSCs), paired with molecular profiling studies, we reveal that SOX17 is a master regulator of HOXA and arterial programs in hemogenic endothelium (HE) and is required for the specification of HE with robust lympho-myeloid potential and DLL4+CXCR4+ phenotype resembling arterial HE at the sites of HSC emergence. Along with the activation of NOTCH signaling, SOX17 directly activates CDX2 expression, leading to the upregulation of the HOXA cluster genes. Since deficiencies in HOXA and NOTCH signaling contribute to the impaired in vivo engraftment of hPSC-derived hematopoietic cells, the identification of SOX17 as a key regulator linking arterial and HOXA programs in HE may help to program HSC fate from hPSCs.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.

Leukemic B Cell CTLA-4 Suppresses Costimulation of T Cells.

In The Journal of Immunology on 1 May 2019 by Do, P., Beckwith, K. A., et al.

The clinical benefit of CTLA-4 blockade on T cells is known, yet the impact of its expression on cancer cells remains unaddressed. We define an immunosuppressive role for tumor-expressed CTLA-4 using chronic lymphocytic leukemia (CLL) as a disease model. CLL cells, among other cancer cells, are CTLA-4+ Coculture with activated human T cells induced surface CTLA-4 on primary human CLL B cells. CTLA-4 on CLL-derived human cell lines decreased CD80 expression on cocultured CD80+ cells, with restoration upon CTLA-4 blockade. Coculture of CTLA-4+ CLL cells with CD80-GFP+ cell lines revealed transfer of CD80-GFP into CLL tumor cells, similar to CTLA-4+ T cells able to trans-endocytose CD80. Coculture of T cells with CTLA-4+ CLL cells decreased IL-2 production. Using a human CTLA-4 knock-in mouse lacking FcγR function, antitumor efficacy was observed by blocking murine CTLA-4 on tumor cells in isolation of the T cell effect and Fc-mediated depletion. These data implicate tumor CTLA-4 in cancer cell-mediated immunosuppression in vitro and as having a functional role in tumor cells in vivo.
Copyright © 2019 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology

Expression of the Immune Checkpoint Modulator OX40 in Acute Lymphoblastic Leukemia Is Associated with BCR-ABL Positivity.

In Neoplasia (New York, N.Y.) on 1 November 2018 by Rothfelder, K., Hagelstein, I., et al.

OX40 and its ligand are members of the TNF/TNF receptor superfamily, which includes various molecules influencing cellular signaling and function of both tumor and immune cells. The ability of OX40 to promote proliferation and differentiation of activated T cells fueled present attempts to modulate this immune checkpoint to reinforce antitumor immunity. While we recently found evidence for the involvement of OX40 in pathophysiology of acute myeloid leukemia including natural killer (NK) cell immunosurveillance, less is known on its role in acute lymphoblastic leukemia (ALL). In the present study, OX40 expression on ALL cells was significantly associated with positivity for the adverse risk factor BCR-ABL. In line, signaling via OX40 increased metabolic activity of primary ALL cells and resulted in release of cytokines involved in disease pathophysiology. Furthermore, interaction of ALL-expressed OX40 with its cognate ligand on NK cells stimulated ALL cell lysis. The data presented thus not only identify the yet unknown involvement of OX40/OX40L in ALL pathophysiology and NK cell immunosurveillance but also point to the necessity to thoroughly consider the consequences of modulating the OX40/OX40L molecule system beyond its effects on T cells when developing OX40-targeting approaches for cancer immunotherapy.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology

Cirmtuzumab may enhance the therapeutic activity of ibrutinib by inhibiting ROR1-dependent signaling pathway in patients with chronic lymphocytic leukemia (CLL). Mantle cell lymphoma (MCL) is B-cell malignancy that also expresses ROR1. In this study, we found that the plasma of patients with MCL had high levels of Wnt5a, a ROR1 ligand, that were comparable to those found in patients with CLL; in contrast Wnt5a was virtually undetectable in the plasma of age-matched healthy adults. We also found that Wnt5a induced Rac1 activation in the primary MCL cells. Cirmtuzumab, but not ibrutinib, could inhibit the capacity of Wnt5a to induce primary MCL cells to activate Rac1. Addition of exogenous Wnt5a in vitro significantly enhanced the numbers of MCL cell divisions and the proportion of dividing MCL cells entering S/G2 in MCL cells over time in the presence of CD154 and IL-4/10. Treatment of the MCL cells with cirmtuzumab, but not ibrutinib, blocked Wnt5a-enhanced proliferation of MCL cells. This study indicates that cirmtuzumab and ibrutinib may have complementary activity in the treatment of patients with MCL.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb