Product Citations: 5

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.

  • FC/FACS
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology

Identification of the Human Skeletal Stem Cell.

In Cell on 20 September 2018 by Chan, C. K. F., Gulati, G. S., et al.

Stem cell regulation and hierarchical organization of human skeletal progenitors remain largely unexplored. Here, we report the isolation of a self-renewing and multipotent human skeletal stem cell (hSSC) that generates progenitors of bone, cartilage, and stroma, but not fat. Self-renewing and multipotent hSSCs are present in fetal and adult bones and can also be derived from BMP2-treated human adipose stroma (B-HAS) and induced pluripotent stem cells (iPSCs). Gene expression analysis of individual hSSCs reveals overall similarity between hSSCs obtained from different sources and partially explains skewed differentiation toward cartilage in fetal and iPSC-derived hSSCs. hSSCs undergo local expansion in response to acute skeletal injury. In addition, hSSC-derived stroma can maintain human hematopoietic stem cells (hHSCs) in serum-free culture conditions. Finally, we combine gene expression and epigenetic data of mouse skeletal stem cells (mSSCs) and hSSCs to identify evolutionarily conserved and divergent pathways driving SSC-mediated skeletogenesis. VIDEO ABSTRACT.
Published by Elsevier Inc.

  • Stem Cells and Developmental Biology

Generation and use of a humanized bone-marrow-ossicle niche for hematopoietic xenotransplantation into mice.

In Nature Protocols on 1 October 2017 by Reinisch, A., Hernandez, D. C., et al.

Xenotransplantation is frequently used to study normal and malignant hematopoiesis of human cells. However, conventional mouse xenotransplantation models lack essential human-specific bone-marrow (BM)-microenvironment-derived survival, proliferation, and self-renewal signals for engraftment of normal and malignant blood cells. As a consequence, many human leukemias and other hematologic disorders do not robustly engraft in these conventional models. Here, we describe a complete workflow for the generation of humanized ossicles with an accessible BM microenvironment that faithfully recapitulates normal BM niche morphology and function. The ossicles, therefore, allow for accelerated and superior engraftment of primary patient-derived acute myeloid leukemia (AML) and other hematologic malignancies such as myelofibrosis (MF) in mice. The humanized ossicles are formed by in situ differentiation of BM-derived mesenchymal stromal cells (MSCs). Human hematopoietic cells can subsequently be transplanted directly into the ossicle marrow space or by intravenous injection. Using this method, a humanized engraftable BM microenvironment can be formed within 6-10 weeks. Engraftment of human hematopoietic cells can be evaluated by flow cytometry 8-16 weeks after transplantation. This protocol describes a robust and reproducible in vivo methodology for the study of normal and malignant human hematopoiesis in a more physiologic setting.

  • FC/FACS
  • Homo sapiens (Human)
  • Mus musculus (House mouse)

A robust and rapid xenograft model to assess efficacy of chemotherapeutic agents for human acute myeloid leukemia.

In Blood Cancer Journal on 20 March 2015 by Saland, E., Boutzen, H., et al.

Relevant preclinical mouse models are crucial to screen new therapeutic agents for acute myeloid leukemia (AML). Current in vivo models based on the use of patient samples are not easy to establish and manipulate in the laboratory. Our objective was to develop robust xenograft models of human AML using well-characterized cell lines as a more accessible and faster alternative to those incorporating the use of patient-derived AML cells. Five widely used AML cell lines representing various AML subtypes were transplanted and expanded into highly immunodeficient non-obese diabetic/LtSz-severe combined immunodeficiency IL2Rγc(null) mice (for example, cell line-derived xenografts). We show here that bone marrow sublethal conditioning with busulfan or irradiation has equal efficiency for the xenotransplantation of AML cell lines. Although higher number of injected AML cells did not change tumor engraftment in bone marrow and spleen, it significantly reduced the overall survival in mice for all tested AML cell lines. On the basis of AML cell characteristics, these models also exhibited a broad range of overall mouse survival, engraftment, tissue infiltration and aggressiveness. Thus, we have established a robust, rapid and straightforward in vivo model based on engraftment behavior of AML cell lines, all vital prerequisites for testing new therapeutic agents in preclinical studies.

  • FC/FACS
  • Cancer Research

In vitro differentiation of mouse and human stem cells into early T cells has been successfully demonstrated using artificial Notch signaling systems. However, generation of mature, antigen-specific, functional T cells, directly from human stem cells has remained elusive, except when using stromal coculture of stem cells retrovirally transfected with antigen-specific T cell receptors (TCRs). Here we show that human umbilical cord blood (UCB)-derived CD34+CD38-/low hematopoietic stem cells can be successfully differentiated into functional, antigen-specific cytotoxic CD8+ T cells without direct stromal coculture or retroviral TCR transfection. Surface-immobilized Notch ligands (DLL1) and stromal cell conditioned medium successfully induced the development of CD1a+CD7+ and CD4+CD8+ early T cells. These cells, upon continued culture with cytomegalovirus (CMV) or influenza-A virus M1 (GIL) epitope-loaded human leukocyte antigen (HLA)-A*0201 tetramers, resulted in the generation of a polyclonal population of CMV-specific or GIL-specific CD8+ T cells, respectively. Upon further activation with antigen-loaded target cells, these antigen-specific, stem cell-derived T cells exhibited cytolytic functionality, specifically CD107a surface mobilization, interferon gamma (IFNg) production, and Granzyme B secretion. Such scalable, in vitro generation of functional, antigen-specific T cells from human stem cells could eventually provide a readily available cell source for adoptive transfer immunotherapies and also allow better understanding of human T cell development.
Copyright © 2013 AlphaMed Press.

  • FC/FACS
  • Homo sapiens (Human)
  • Cardiovascular biology
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology
View this product on CiteAb