Product Citations: 122

The primary outcome was the evaluation of the T-cell phenotype in autoimmune primary adrenal insufficiency (PAI). Secondary outcomes included the evaluation of the CD4+CD25+Foxp3+ Treg population and the gene expression levels of IL-6, IL-17A, cyclooxygenase (COX)-2, heat shock proteins (HSP)-70, indoleamine-2,3-dioxygenase (IDO), programmed death-ligand 1 (PD-L1), inducible nitric oxide synthase (iNOS), and thioredoxin (TXN)-1.
We prospectively included 15 patients with PAI on conventional glucocorticoid (GC) replacement therapy, 15 switched to dual-release hydrocortisone (DR-HC), and 20 healthy controls. Serum inflammatory parameters and peripheral blood mononuclear cells (PBMCs) were evaluated at baseline and after 12 months of treatment.
At baseline, significantly higher CD4+ and CD8+ (both p < 0.001) T-cell percentages, a lower CD4+/CD8+ ratio (p < 0.05), and higher CD25+ and CD4+/CD25+ T cells (both p < 0.001) were observed in PAI compared to controls. After 12 months of DR-HC treatment, we found significantly lower IL-6 (p = 0.019), IL-17A (p = 0.046), COX-2 (p < 0.001), HSP-70 (p = 0.006), and TXN-1 (p = 0.008) and higher PD-L1 (p < 0.001) and IDO (p < 0.001) mRNA values compared to baseline. After 12 months of DR-HC treatment, a significant increase in CD4+ T cells (p = 0.012), PD-L1 (p = 0.003), and IDO (p < 0.001) and a decrease in CD8+ T cells (p < 0.001), IL-6 (p = 0.003), IL-17A (p = 0.0014), COX-2 (p < 0.001), HSP-70 (p = 0.005), and TXN-1 (p = 0.0008), as well as a significantly higher conversion in the CD4+/CD8+ ratio (p = 0.033), were observed compared to conventional GCs.
The switch from conventional GCs to DR-HC treatment altered the T lymphocyte phenotype and CD4+/CD8+ ratio in a Treg-independent manner, inducing significant improvements in the immune and inflammatory profile in PAI.
Copyright © 2025 Tomasello, Coppola, Pizzolanti, Giordano, Arnaldi and Guarnotta.

  • Homo sapiens (Human)
  • Cardiovascular biology
  • Immunology and Microbiology

Inflammatory cells infiltration in the cerebrospinal fluid is a hallmark of severe enterovirus 71 (EV71) infection, but which type of immune cells are critical for severe EV71 infection remains unclear. Here, we observe that both neutrophils and macrophages are increased in the brains of patients and mice with severe EV71 infection, and the depletion of neutrophils but not macrophages results in a marked enhancement of survival of EV71-infected mice. Furthermore, CCR1/3 may play an important role in CCL3 facilitating the accumulation of neutrophils in the brains of patients. Inhibition of CCL3 by anti-CCL3 antibodies or selected miRNAs significantly reduces the neutrophils infiltration in brains and the mortality of EV71-infected mice. Collectively, CCL3-mediated neutrophils recruitment into the brain contributes to the severe immunopathology of EV71 infection, which provides a potential diagnostic and therapeutic target for EV71 infection.
© 2024 The Author(s).

  • Immunology and Microbiology

Human T-cell leukemia virus (HTLV-1) is the etiological agent of lymphoproliferative diseases such as adult T-cell leukemia and T-cell lymphoma (ATL) and a neurodegenerative disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). While several molecular clones of HTLV-1 have been published, all were isolated from samples derived from patients with adult T-cell leukemia. Here, we report the characterization of an HTLV-1 infectious molecular clone isolated from a sample of a patient with HAM/TSP disease. Genetic comparative analyses of the HAM/TSP molecular clone (pBST) revealed unique genetic alterations and specific viral mRNA expression patterns. Interestingly, our clone also harbors characteristics previously published to favor the development of HAM/TSP disease. The molecular clone is capable of infection and immortalization of human primary T cells in vitro. Our studies further demonstrate that the HTLV-1 virus produced from primary T cells transfected with pBST or ACH molecular clones cannot sustain long-term expansion, and cells cease to proliferate after 3-4 months in culture. In contrast, long-term proliferation and immortalization were achieved if the virus was transmitted from dendritic cells to primary T cells, and secondary infection of 729B cells in vitro was demonstrated. In both primary T cells and 729B cells, pBST and ACH were latent, and only hbz viral RNA was detected. This study suggests that HTLV-1 transmission from DC to T cells favors the immortalization of latently infected cells.

  • Immunology and Microbiology

Tumor-associated macrophages (TAMs) have been implicated as a tumor microenvironment (TME) cell population, which may be playing a vital role in the inhibition of effective T cell responses in the prostate TME. In this manuscript, we leverage a novel microscale cell culture platform, known as Stacks, to investigate mono-, co-, and tri-culture TME models comprised of prostate tumor cell lines, primary macrophages, and autologous T cells from patients with prostate cancer. Through multiplexed analysis of these multi-cellular prostate tumor models, we capture a dynamic interaction between primary TAMs and activated T cells that resulted in reciprocal proinflammatory activation of both cell populations upon interaction. These findings suggest that activated T cells are capable of reprogramming immunosuppressive TAMs in the context of prostate tumor models and that TAM reprogramming may play a key supportive role in restoring proinflammatory T cell tumor responses in the prostate TME.
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.

  • Cancer Research
  • Immunology and Microbiology

Distinct biological characteristics of mesenchymal stem cells separated from different components of human placenta.

In Biochemistry and Biophysics Reports on 1 September 2024 by Deng, X., Zhang, S., et al.

Mesenchymal stem cells (MSCs) have tremendous potential in cell therapy and regenerative medicine. The placenta-derived MSCs (PMSCs) are becoming favorable sources as they are ethically preferable and rich in MSCs. Although several subgroups of PMSCs have been identified from human term placenta, optimal sources for specific clinical applications remain to be elucidated. This study aimed to isolate MSCs from various components of the placenta, and compare their biological characteristics, including morphology, proliferation, immunophenotype, differentiation potential, growth factor and cytokine secretion, and immunomodulatory properties. Finally, four distinct groups of PMSCs were isolated from the placenta: amniotic membrane-derived MSCs (AM-MSCs), chorionic membrane-derived MSCs (CM-MSCs), chorionic plate-derived MSCs (CP-MSCs), and chorionic villi-derived MSCs (CV-MSCs). The results showed that CV-MSCs had good proliferation ability, and were easier to induce osteogenic and chondrogenic differentiation; CP-MSCs exhibited the strongest inhibitory effect on the proliferation of activated T cells, secreted high levels of EGF and IL-6, and could well differentiate into osteoblasts, adipocytes, and chondroblasts; AM-MSCs showed good growth dynamics in the early generations, were able to grow at high density, and tended to induce differentiation into osteogenic and neural lineages. These findings may provide novel evidence for the selection of seed cells in clinical application.
© 2024 Published by Elsevier B.V.

  • Stem Cells and Developmental Biology
View this product on CiteAb