Given the scarcity of effective therapeutic targets, metastatic triple negative breast cancer (mTNBC) has shorter survival times compared to other advanced breast cancer subtypes. Although chemo-immunotherapy with immune checkpoint inhibitors (ICIs) in PD-L1+ mTNBC has shown promise, survival benefit remains modest. Therefore, it is crucial to gain improved insight into the mechanisms underlying response and resistance to checkpoint inhibition in mTNBC.
We employed single cell RNA sequencing (scRNAseq), single cell secretomics, and flow cytometry to identify transcriptomic and proteomic peripheral immune cell signatures associated with response and non-response to anti-PD-1/PD-L1 therapy and chemotherapy in mTNBC.
Transcriptomic analysis reveal divergent transcriptional programming of CD33+ myeloid cells between responders and non-responders, even in pretreatment PBMC samples. This divergence, in responders, is characterized by an immune-promoting CD33+ cell phenotype involving IL1b signaling compared to non-responders, where an immunosuppressive phenotype marked by IL1b inhibition is observed. These baseline differences become more pronounced during the course of chemo-immunotherapy. Differences in CD33+ cell phenotype result in functional differences in lymphocyte activities between responders and non-responders. Depletion of CD33+ cells in pre-treatment samples from non-responders, restores T cell effector function.
Our findings highlight CD33+ cell phenotype as a key determinant of response to chemo-immunotherapy, which can be assessed from peripheral blood. This offers a valuable tool in the context of metastatic TNBC, in which tissue sampling is often challenging.
© 2025. The Author(s).