Product Citations: 42

Siglec-8 Signals Through a Non-Canonical Pathway to Cause Human Eosinophil Death In Vitro.

In Frontiers in Immunology on 2 November 2021 by Carroll, D. J., Cao, Y., et al.

Sialic acid-binding immunoglobulin-like lectin (Siglec)-8 is a glycan-binding receptor bearing immunoreceptor tyrosine-based inhibitory and switch motifs (ITIM and ITSM, respectively) that is selectively expressed on eosinophils, mast cells, and, to a lesser extent, basophils. Previous work has shown that engagement of Siglec-8 on IL-5-primed eosinophils causes cell death via CD11b/CD18 integrin-mediated adhesion and NADPH oxidase activity and identified signaling molecules linking adhesion, reactive oxygen species (ROS) production, and cell death. However, the proximal signaling cascade activated directly by Siglec-8 engagement has remained elusive. Most members of the Siglec family possess similar cytoplasmic signaling motifs and recruit the protein tyrosine phosphatases SHP-1/2, consistent with ITIM-mediated signaling, to dampen cellular activation. However, the dependence of Siglec-8 function in eosinophils on these phosphatases has not been studied. Using Siglec-8 antibody engagement and pharmacological inhibition in conjunction with assays to measure cell-surface upregulation and conformational activation of CD11b integrin, ROS production, and cell death, we sought to identify molecules involved in Siglec-8 signaling and determine the stage of the process in which each molecule plays a role. We demonstrate here that the enzymatic activities of Src family kinases (SFKs), Syk, SHIP1, PAK1, MEK1, ERK1/2, PLC, PKC, acid sphingomyelinase/ceramidase, and Btk are all necessary for Siglec-8-induced eosinophil cell death, with no apparent role for SHP-1/2, SHIP2, or c-Raf. While most of these signaling molecules are necessary for Siglec-8-induced upregulation of CD11b integrin at the eosinophil cell surface, Btk is phosphorylated and activated later in the signaling cascade and is instead necessary for CD11b activation. In contrast, SFKs and ERK1/2 are phosphorylated far earlier in the process, consistent with their role in augmenting cell-surface levels of CD11b. In addition, pretreatment of eosinophils with latrunculin B or jasplakinolide revealed that actin filament disassembly is necessary and sufficient for surface CD11b integrin upregulation and that actin polymerization is necessary for downstream ROS production. These results show that Siglec-8 signals through an unanticipated set of signaling molecules in IL-5-primed eosinophils to induce cell death and challenges the expectation that ITIM-bearing Siglecs signal through inhibitory pathways involving protein tyrosine phosphatases to achieve their downstream functions.
Copyright © 2021 Carroll, Cao, Bochner and O’Sullivan.

  • Immunology and Microbiology

From compartments to gene loops: Functions of the 3D genome in the human brain

Preprint on Research Square on 22 October 2021 by Roussos, P., Rahman, S., et al.

The 3D genome plays a key role in the regulation of gene expression. However, little is known about the spatiotemporal organization of chromatin during human brain development. We investigated the 3D genome in human fetal cortical plate and in adult prefrontal cortical neurons and glia. We found that neurons have weaker compartments than glia that emerge during fetal development. Furthermore, neurons form loop domains whereas glia form compartment domains. We show through CRISPRi on CNTNAP2 that transcription is coupled to loop domain insulation. Gene regulation during neural development involves increased use of enhancer-promoter and repressor-promoter loops. Finally, transcription is associated with gene loops. Altogether, we provide novel insights into the relationship between gene expression and different scales of chromatin organization in the human brain.

Hemagglutinin (HA) is the immunodominant protein of the influenza virus. We previously showed that mice injected with a monoglycosylated influenza A HA (HAmg) produced cross-strain-reactive antibodies and were better protected than mice injected with a fully glycosylated HA (HAfg) during lethal dose challenge. We employed a single B-cell screening platform to isolate the cross-protective monoclonal antibody (mAb) 651 from mice immunized with the HAmg of A/Brisbane/59/2007 (H1N1) influenza virus (Bris/07). The mAb 651 recognized the head domain of a broad spectrum of HAs from groups 1 and 2 influenza A viruses and offered prophylactic and therapeutic efficacy against A/California/07/2009 (H1N1) (Cal/09) and Bris/07 infections in mice. The antibody did not possess neutralizing activity; however, antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis mediated by natural killer cells and alveolar macrophages were important in the protective efficacy of mAb 651. Together, this study highlighted the significance of effector functions for non-neutralizing antibodies to exhibit protection against influenza virus infection.

  • Immunology and Microbiology

Live Imaging and Quantification of Neutrophil Extracellular Trap Formation.

In Current Protocols on 1 July 2021 by Silva, L. M., Moutsopoulos, N., et al.

NeutrophilExtracellular Trap (NET) formation (NETosis) is a unique process that occurs in response to numerous stimuli. To investigate NETosis, we created a method that can be used easily without the need for complex programming abilities and commercial software packages. This article describes a fully automated assay to quantify NETosis using fluorescence live imaging on an automated widefield inverted microscope. Herein, we describe (1) sample preparation, (2) required equipment for automated acquisition, and finally (3) analysis of NETosis using the readily available image analysis software Fiji (ImageJ2). This protocol can be adapted to evaluate NETosis after different stimuli, and can be easily modified to allow high-throughput acquisition and analysis using a multi-well plate format. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Neutrophil isolation and plate setup Basic Protocol 2: Microscope and acquisition setup for automated high throughput imaging Basic Protocol 3: Analysis of NETosis and apoptosis data.
Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC.

Characteristics of Malignant Pleural Effusion Resident CD8+ T Cells from a Heterogeneous Collection of Tumors.

In International Journal of Molecular Sciences on 27 August 2020 by Dhupar, R., Okusanya, O. T., et al.

While T cell-based cancer immunotherapies have shown great promise, there remains a need to understand how individual metastatic tumor environments impart local T cell dysfunction. At advanced stages, cancers that metastasize to the pleural space can result in a malignant pleural effusion (MPE) that harbors abundant tumor and immune cells, often exceeding 108 leukocytes per liter. Unlike other metastatic sites, MPEs are readily and repeatedly accessible via indwelling catheters, providing an opportunity to study the interface between tumor dynamics and immunity. In the current study, we examined CD8+ T cells within MPEs collected from patients with heterogeneous primary tumors and at various stages in treatment to determine (1) if these cells possess anti-tumor activity following removal from the MPE, (2) factors in the MPE that may contribute to their dysfunction, and (3) the phenotypic changes in T cell populations that occur following ex vivo expansion. Co-cultures of CD8+ T cells with autologous CD45- tumor containing cells demonstrated cytotoxicity (p = 0.030) and IFNγ production (p = 0.003) that inversely correlated with percent of myeloid derived suppressor cells, lactate, and lactate dehydrogenase (LDH) within the MPE. Ex vivo expansion of CD8+ T cells resulted in progressive differentiation marked by distinct populations expressing decreased CD45RA, CCR7, CD127, and increased inhibitory receptors. These findings suggest that MPEs may be a source of tumor-reactive T cells and that the cellular and acellular components suppress optimal function.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb