Product Citations: 28

Mutant IDH Modulates Suppressive Myeloid Populations in Malignant Glioma.

In Clinical Cancer Research on 13 September 2024 by Grewal, E. P., Richardson, L. G., et al.

Mutations in the isocitrate dehydrogenase (IDH) genes IDH1 and IDH2 have critical diagnostic and prognostic significance in diffuse gliomas. Neomorphic mutant IDH activity has been previously implicated in T-cell suppression; however, the effects of IDH mutations on intratumoral myeloid populations remain underexplored. In this study, we investigate the influence of IDH status on the myeloid compartment using human glioma specimens and preclinical models.
We performed RNA sequencing and quantitative immunofluorescence on newly diagnosed, treatment-naive IDH-mutant grade 4 astrocytoma and IDH-wild-type (IDH-WT) glioblastoma (GBM) specimens. We also generated a syngeneic murine model, comparing transcriptomic and cell-level changes in paired isogenic glioma lines that differ only in IDH mutational status.
Among patient samples, IDH-mutant tumors displayed an underrepresentation of suppressive myeloid transcriptional signatures, which was confirmed at the cellular level with decreased numbers of intratumoral M2-like macrophages and myeloid-derived suppressor cells. Introduction of the mutant IDH enzyme into murine glioma was sufficient to recapitulate the transcriptomic and cellular shifts observed in patient samples.
We provide transcriptomic and cellular evidence that mutant IDH is associated with a quantitative reduction of suppressive myeloid cells in gliomas and that introduction of the mutant enzyme is sufficient to result in corresponding cellular changes using an in vivo preclinical model. These data advance our understanding of high-grade gliomas by identifying key myeloid cell populations that are reprogrammed by mutant IDH and may be targetable through therapeutic approaches.
©2024 American Association for Cancer Research.

  • Cancer Research

Cancer stem cells (CSCs), a group of tumor-initiating and tumor-maintaining cells, may be major players in the treatment resistance and recurrence distinctive of chordoma. Characterizing CSCs is crucial to better targeting this subpopulation.
Using flow cytometry, six chordoma cell lines were evaluated for CSC composition. In vitro, cell lines were stained for B7H6, HER2, MICA-B, ULBP1, EGFR, and PD-L1 surface markers. Eighteen resected chordomas were stained using a multispectral immunofluorescence (mIF) antibody panel to identify CSCs in vivo. HALO software was used for quantitative CSC density and spatial analysis.
In vitro, chordoma CSCs express more B7H6, MICA-B, and ULBP1, assessed by percent positivity and mean fluorescence intensity (MFI), as compared to non-CSCs in all cell lines. PD- L1 percent positivity is increased by >20% in CSCs compared to non-CSCs in all cell lines except CH22. In vivo, CSCs comprise 1.39% of chordoma cells and most are PD-L1+ (75.18%). A spatial analysis suggests that chordoma CSCs cluster at an average distance of 71.51 mm (SD 73.40 mm) from stroma.
To our knowledge, this study is the first to identify individual chordoma CSCs and describe their surface phenotypes using in vitro and in vivo methods. PD-L1 is overexpressed on CSCs in chordoma human cell lines and operative tumor samples. Similarly, potential immunotherapeutic targets on CSCs, including B7H6, MICA-B, ULBP1, EGFR, and HER2 are overexpressed across cell lines. Targeting these markers may have a preferential role in combating CSCs, an aggressive subpopulation likely consequential to chordoma's high recurrence rate.
Copyright © 2024 Lopez, Fabian, Padget, Robbins, Kowalczyk, Lassoued, Pastor, Allen, Gallia, Gulley, Hodge and London.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Blood clots are living tissues that release inflammatory mediators including IL-8/CXCL8 and MCP-1/CCL2. A deeper understanding of blood clots is needed to develop new therapies for prothrombotic disease states and regenerative medicine.
To identify a common transcriptional shift in cultured blood clot leukocytes.
Differential gene expression of whole blood and cultured clots (4 hours at 37 °C) was assessed by RNA sequencing (RNAseq), reverse transcriptase-polymerase chain reaction, proteomics, and histology (23 diverse healthy human donors). Cultured clot serum bioactivity was tested in endothelial barrier functional assays.
All cultured clots developed a polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) signature, including up-regulation of OLR1 (mRNA encoding lectin-like oxidized low-density lipoprotein receptor 1 [Lox-1]), IL-8/CXCL8, CXCL2, CCL2, IL10, IL1A, SPP1, TREM1, and DUSP4/MKP. Lipopolysaccharide enhanced PMN-MDSC gene expression and specifically induced a type II interferon response with IL-6 production. Lox-1 was specifically expressed by cultured clot CD15+ neutrophils. Cultured clot neutrophils, but not activated platelets, shed copious amounts of soluble Lox-1 (sLox-1) with a donor-dependent amplitude. sLox-1 shedding was enhanced by phorbol ester and suppressed by heparin and by beta-glycerol phosphate, a phosphatase inhibitor. Cultured clot serum significantly enhanced endothelial cell monolayer barrier function, consistent with a proresolving bioactivity.
This study suggests that PMN-MDSC activation is part of the innate immune response to coagulation which may have a protective role in inflammation. The cultured blood clot is an innovative thrombus model that can be used to study both sterile and nonsterile inflammatory states and could be used as a personalized medicine tool for drug screening.
Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved.

  • Cardiovascular biology

Resident microbes shape the vaginal epithelial glycan landscape.

In Science Translational Medicine on 29 November 2023 by Agarwal, K., Choudhury, B., et al.

Epithelial cells are covered in carbohydrates (glycans). This glycan coat or "glycocalyx" interfaces directly with microbes, providing a protective barrier against potential pathogens. Bacterial vaginosis (BV) is a condition associated with adverse health outcomes in which bacteria reside in direct proximity to the vaginal epithelium. Some of these bacteria, including Gardnerella, produce glycosyl hydrolase enzymes. However, glycans of the human vaginal epithelial surface have not been studied in detail. Here, we elucidate key characteristics of the "normal" vaginal epithelial glycan landscape and analyze the impact of resident microbes on the surface glycocalyx. In human BV, glycocalyx staining was visibly diminished in electron micrographs compared to controls. Biochemical and mass spectrometric analysis showed that, compared to normal vaginal epithelial cells, BV cells were depleted of sialylated N- and O-glycans, with underlying galactose residues exposed on the surface. Treatment of primary epithelial cells from BV-negative women with recombinant Gardnerella sialidases generated BV-like glycan phenotypes. Exposure of cultured VK2 vaginal epithelial cells to recombinant Gardnerella sialidase led to desialylation of glycans and induction of pathways regulating cell death, differentiation, and inflammatory responses. These data provide evidence that vaginal epithelial cells exhibit an altered glycan landscape in BV and suggest that BV-associated glycosidic enzymes may lead to changes in epithelial gene transcription that promote cell turnover and regulate responses toward the resident microbiome.

Galectin-1 Mediates Chronic STING Activation in Tumors to Promote Metastasis through MDSC Recruitment.

In Cancer Research on 2 October 2023 by Nambiar, D. K., Viswanathan, V., et al.

The immune system plays a crucial role in the regulation of metastasis. Tumor cells systemically change immune functions to facilitate metastatic progression. Through this study, we deciphered how tumoral galectin-1 (Gal1) expression shapes the systemic immune environment to promote metastasis in head and neck cancer (HNC). In multiple preclinical models of HNC and lung cancer in immunogenic mice, Gal1 fostered the establishment of a premetastatic niche through polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC), which altered the local microenvironment to support metastatic spread. RNA sequencing of MDSCs from premetastatic lungs in these models demonstrated the role of PMN-MDSCs in collagen and extracellular matrix remodeling in the premetastatic compartment. Gal1 promoted MDSC accumulation in the premetastatic niche through the NF-κB signaling axis, triggering enhanced CXCL2-mediated MDSC migration. Mechanistically, Gal1 sustained NF-κB activation in tumor cells by enhancing stimulator of interferon gene (STING) protein stability, leading to prolonged inflammation-driven MDSC expansion. These findings suggest an unexpected protumoral role of STING activation in metastatic progression and establish Gal1 as an endogenous-positive regulator of STING in advanced-stage cancers.
Galectin-1 increases STING stability in cancer cells that activates NF-κB signaling and CXCL2 expression to promote MDSC trafficking, which stimulates the generation of a premetastatic niche and facilitates metastatic progression.
©2023 American Association for Cancer Research.

  • Cancer Research
View this product on CiteAb