Product Citations: 6

Deciphering and predicting CD4+ T cell immunodominance of influenza virus hemagglutinin.

In The Journal of Experimental Medicine on 5 October 2020 by Cassotta, A., Paparoditis, P., et al.

The importance of CD4+ T helper (Th) cells is well appreciated in view of their essential role in the elicitation of antibody and cytotoxic T cell responses. However, the mechanisms that determine the selection of immunodominant epitopes within complex protein antigens remain elusive. Here, we used ex vivo stimulation of memory T cells and screening of naive and memory T cell libraries, combined with T cell cloning and TCR sequencing, to dissect the human naive and memory CD4+ T cell repertoire against the influenza pandemic H1 hemagglutinin (H1-HA). We found that naive CD4+ T cells have a broad repertoire, being able to recognize naturally processed as well as cryptic peptides spanning the whole H1-HA sequence. In contrast, memory Th cells were primarily directed against just a few immunodominant peptides that were readily detected by mass spectrometry-based MHC-II peptidomics and predicted by structural accessibility analysis. Collectively, these findings reveal the presence of a broad repertoire of naive T cells specific for cryptic H1-HA peptides and demonstrate that antigen processing represents a major constraint determining immunodominance.
© 2020 Cassotta et al.

  • Immunology and Microbiology

Evaluation of CD160 and CD200 Expression as Differentiating Markers between Chronic Lymphocytic Leukemia and Other Mature B-Cell Neoplasms.

In International Journal of Hematology-oncology and Stem Cell Research on 1 January 2020 by El-Neanaey, W. A., Swelem, R. S., et al.

Background: The present work aimed to investigate the expression of CD160/ CD200 in CLL and other mature B-cell neoplasms (MBN) and their use as an additional diagnostic tool for differentiating CLL from other MBN. Materials and Methods: Using flow cytometry, we detected the expression of CD160 &CD200 on B-cells from 30 CLL patients, 30 other MBN patients in addition to 20 controls. CDs160/200 measurements were determined as a percentage expression (≥20% was considered positive) and as a ratio of the mean fluorescence intensities (MFIR) of leukemic cells/controls and were considered positive when the ratios were ≥2 and 20, respectively. Results: 90% and 100% of the CLL group expressed CDs160/200 in comparison to 60% and 63.3% of other MBN (p=0.007, p<0.001), respectively. By MFIR, 96.7% and 50% of our CLL group expressed CDs160/200 in comparison to 76.7% and 30% of other MBN, respectively. CDs160/ 200 were not expressed on the controls. Positive co-expression of CD160 and CD200 was found in 90% of the CLL cases, 60% of HCL patients and only in 40% of B-NHL. However, double negative expression of both markers was found only in 24% of the B-NHL patients. Conclusion : CD160 with CD200 can be used as additional diagnostic markers to the available routine panel to differentiate between B-CLL and other non-specified B-NHL patients.
Copyright : © International Journal of Hematology-Oncology and Stem Cell Research & Tehran University of Medical Sciences.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • Immunology and Microbiology

Exonal switch down-regulates the expression of CD5 on blasts of acute T cell leukaemia.

In Clinical and Experimental Immunology on 1 December 2017 by Rai, A. K., Singh, A., et al.

To date, CD5 expression and its role in acute T cell lymphoblastic leukaemia (T-ALL) have not been studied closely. We observed a significant reduction in surface expression of CD5 (sCD5) on leukaemic T cells compared to autologous non-leukaemic T cells. In this study, we have shown the molecular mechanism regulating the expression and function of CD5 on leukaemic T cells. A total of 250 patients suffering from leukaemia and lymphoma were immunophenotyped. Final diagnosis was based on their clinical presentation, morphological data and flow cytometry-based immunophenotyping. Thirty-nine patients were found to be of ALL-T origin. Amplification of early region of E1A and E1B transcripts of CD5 was correlated with the levels of surface and intracellular expression of CD5 protein. Functional studies were performed to show the effect of CD5 blocking on interleukin IL-2 production and survival of leukaemic and non-leukaemic cells. Lack of expression of sCD5 on T-ALL blasts was correlated closely with predominant transcription of exon E1B and significant loss of exon E1A of the CD5 gene, which is associated with surface expression of CD5 on lymphocytes. High expression of E1B also correlates with increased expression of cytoplasmic CD5 (cCD5) among leukaemic T cells. Interestingly, we observed a significant increase in the production of IL-2 by non-leukaemic T cells upon CD5 blocking, leading possibly to their increased survival at 48 h. Our study provides understanding of the regulation of CD5 expression on leukaemic T cells, and may help in understanding the molecular mechanism of CD5 down-regulation.
© 2017 British Society for Immunology.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Engineering autologous or allogeneic T cells to express a suicide gene can control potential toxicity in adoptive T-cell therapies. We recently reported the development of a novel human suicide gene system that is based on an orphan human cytochrome P450 enzyme, CYP4B1, and the naturally occurring alkylator prodrug 4-ipomeanol. The goal of this study was to systematically develop a clinically applicable self-inactivating lentiviral vector for efficient co-expression of CYP4B1 as an ER-located protein with two distinct types of cell surface proteins, either MACS selection genes for donor lymphocyte infusions after allogeneic stem cell transplantation or chimeric antigen receptors for retargeting primary T cells. The U3 region of the myeloproliferative sarcoma virus in combination with the T2A site was found to drive high-level expression of our CYP4B1 mutant with truncated CD34 or CD271 as MACS suitable selection markers. This lentiviral vector backbone was also well suited for co-expression of CYP4B1 with a codon-optimized CD19 chimeric antigen receptor (CAR) construct. Finally, 4-ipomeanol efficiently induced apoptosis in primary T cells that co-express mutant CYP4B1 and the divergently located MACS selection and CAR genes. In conclusion, we here developed a clinically suited lentiviral vector that supports high-level co-expression of cell surface proteins with a potent novel human suicide gene.

  • Genetics
  • Immunology and Microbiology
View this product on CiteAb