Product Citations: 2

Distinct Cellular Immune Responses to SARS-CoV-2 in Pregnant Women.

In The Journal of Immunology on 15 April 2022 by Gomez-Lopez, N., Romero, R., et al.

Pregnant women are at increased risk of adverse outcomes, including preeclampsia and preterm birth, that may result from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Pregnancy imprints specific maternal immune responses that can modulate host susceptibility to microbial infection; therefore, recent studies have focused on the humoral response against SARS-CoV-2 in pregnant women. However, the pregnancy-specific cellular immune responses triggered by SARS-CoV-2 infection are poorly understood. In this study, we undertook an extensive in vitro investigation to determine the cellular immune responses to SARS-CoV-2 particles and proteins/peptides in pregnant women. First, we show that SARS-CoV-2 particles do not alter the pregnancy-specific oxidative burst of neutrophils and monocytes. Yet, SARS-CoV-2 particles/proteins shift monocyte activation from the classical to intermediate states in pregnant, but not in nonpregnant, women. Furthermore, SARS-CoV-2 proteins, but not particles or peptide pools, mildly enhance T cell activation during pregnancy. As expected, B cell phenotypes are heavily modulated by SARS-CoV-2 particles in all women; yet, pregnancy itself further modified such responses in these adaptive immune cells. Lastly, we report that pregnancy itself governs cytokine responses in the maternal circulation, of which IFN-β and IL-8 were diminished upon SARS-CoV-2 challenge. Collectively, these findings highlight the differential in vitro responses to SARS-CoV-2 in pregnant and nonpregnant women and shed light on the immune mechanisms implicated in coronavirus disease 2019 during pregnancy.
Copyright © 2022 by The American Association of Immunologists, Inc.

  • FC/FACS
  • Homo sapiens (Human)
  • COVID-19
  • Endocrinology and Physiology
  • Immunology and Microbiology

Evaluation of CD307a expression patterns during normal B-cell maturation and in B-cell malignancies by flow cytometry.

In Cytometry. Part B, Clinical Cytometry on 1 July 2018 by Auat, M., Cardoso, C. C., et al.

Flow cytometric immunophenotyping is deemed a fundamental tool for the diagnosis of B-cell neoplasms. Currently, the investigation of novel immunophenotypic markers has gained importance, as they can assist in the precise subclassification of B-cell malignancies by flow cytometry. Therefore, the purpose of the present study was to evaluate the expression of CD307a during normal B-cell maturation and in B-cell malignancies as well as to investigate its potential role in the differential diagnosis of these entities.
CD307a expression was assessed by flow cytometry in normal precursor and mature B cells and in 115 samples collected from patients diagnosed with precursor and mature B-cell neoplasms. CD307a expression was compared between neoplastic and normal B cells.
B-acute lymphoblastic leukemia cases exhibited minimal expression of CD307a, displaying a similar expression pattern to that of normal B-cell precursors. Mantle cell lymphoma (MCL) cases showed the lowest levels of CD307a among mature B-cell neoplasms. CD307a expression was statistically lower in MCL cases than in chronic B lymphocytic leukemia (CLL) and marginal zone lymphoma (MZL) cases. No statistical differences were observed between CD307a expression in neoplastic and normal plasma cells.
These results indicate that the assessment of CD307a expression by flow cytometry could be helpful to distinguish CLL from MCL, and the latter from MZL. Although these results are not entirely conclusive, they provide a basis for further studies in a larger cohort of patients. © 2018 International Clinical Cytometry Society.
© 2018 International Clinical Cytometry Society.

  • Immunology and Microbiology
View this product on CiteAb