Product Citations: 105

1 image found

Capivasertib enhances chimeric antigen receptor T cell activity in preclinical models of B cell lymphoma.

In Molecular Therapy. Methods Clinical Development on 13 March 2025 by Hsieh, H. J., Urak, R., et al.

Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling is involved in the growth of normal and cancer cells and is crucial for T cell activation. Previously, we have shown that AKT Inhibitor VIII, a selective AKT-1/2 inhibitor, during chimeric antigen receptor (CAR) T cell manufacturing, improves CAR T cell function in preclinical models. Although AKT Inhibitor VIII could enhance CAR T cell function, AKT Inhibitor VIII is not a clinical-grade compound. However, pan-AKT inhibitors have been applied against cancers with PIK3CA/AKT/PTEN alterations in clinical trials. We evaluated ex vivo and in vivo strategies of enhancing CAR T cell therapeutic effect using the pan-AKT inhibitor capivasertib. We found that ex vivo 0.25 μM capivasertib treatment during the period of T cell stimulation during manufacture enhanced the antitumor activity of CAR T cells in B cell lymphoma mouse models. Mechanistically, capivasertib changed gene and protein expression patterns related to the functions of memory and effector CAR T cells. Furthermore, in vivo combination therapy of capivasertib and CD19-specific CAR T cells led to improved early response to and persistence of functional CAR T cells in mice bearing PTEN-deficient lymphoma cells compared to CAR T cells alone. Capivasertib exerts a similar function to AKT Inhibitor VIII in modulating CAR T cells, and combining CAR T cell therapy with capivasertib both ex vivo and in vivo offers the potential to improve patient outcomes. Since PTEN deficiency is common in cancer and is the main mechanism for capivasertib function, combination therapy may provide an alternative solution for the challenges of CAR T cell therapy.
© 2025 The Author(s).

  • Cancer Research
  • Immunology and Microbiology

In this paper, we measured B cell function in elderly healthy individuals (EH) and in elderly patients with Type-2 Diabetes Mellitus (T2DM, ET2DM), which are treatment-naive, as compared to healthy young (YH) individuals. Results show a higher serum inflammatory status of elderly versus young individuals, and especially of ET2DM versus EH. This status is associated with a reduced response to the seasonal influenza vaccine and with increased frequencies of the circulating pro-inflammatory B cell subset called Double Negative (DN) B cells. B cells from ET2DM patients are not only more inflammatory but also hyper-metabolic as compared to those from EH controls. The results herein are to our knowledge the first to show that T2DM superimposed on aging further increases systemic and B cell intrinsic inflammation, as well as dysfunctional humoral immunity. Our findings confirm and extend our previously published findings showing that inflammatory B cells are metabolically supported.
Copyright © 2024 Frasca and Bueno.

  • FC/FACS
  • Cell Biology
  • Immunology and Microbiology

Azithromycin targets the CD27 pathway to modulate CD27hi T-lymphocyte expansion and type-1 effector phenotype.

In Frontiers in Immunology on 31 August 2024 by Ansari, A. W., Jayakumar, M. N., et al.

Macrolide antibiotic azithromycin is widely used in clinical practice to treat respiratory tract infections and inflammatory diseases. However, its mechanism of action is not fully understood. Given the involvement of the CD27 pathway in the pathophysiology of various T-lymphocyte-mediated inflammatory, autoimmune, and lymphoproliferative diseases, we examined the impact of AZM on CD27 regulation and potential consequences on CD4+ and CD8+ T-cell phenotypes. Using cellular immunology approaches on healthy donors' peripheral blood mononuclear cells, we demonstrate AZM-mediated downregulation of surface CD27 expression as well as its extracellular release as soluble CD27. Notably, AZM-exposed CD27high (hi) cells were defective in their ability to expand compared to CD27intermediate (Int) and CD27low (lo) subsets. The defective CD27hi subset expansion was found to be associated with impaired cell proliferation and cell division. At the molecular level, the CD27hi subset exhibited lower mTOR activity than other subsets. Functionally, AZM treatment resulted in marked depletion of helper CD4+ (Th1) and cytotoxic CD8+ T-lymphocyte (Tc1)-associated CXCR3+CD27hi effector cells and inhibition of inflammatory cytokine IFN-γ production. These findings provide mechanistic insights on immunomodulatory features of AZM on T-lymphocyte by altering the CD27 pathway. From a clinical perspective, this study also sheds light on potential clinical benefits observed in patients on prophylactic AZM regimens against various respiratory diseases and opens avenues for future adjunct therapy against Th1- and Tc1-dominated inflammatory and autoimmune diseases.
Copyright © 2024 Ansari, Jayakumar, Ahmad, Venkatachalam, Salameh, Unnikannan, Raheed, Mohammed, Mahboub, Al-Ramadi, Hamid, Steinhoff and Hamoudi.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Immunometabolic effects of lactate on humoral immunity in healthy individuals of different ages.

In Nature Communications on 30 August 2024 by Romero, M., Miller, K., et al.

Aging is characterized by chronic systemic inflammation and metabolic changes. We compare the metabolic status of B cells from young and elderly donors and found that aging is associated with higher oxygen consumption rates, and especially higher extracellular acidification rates, measures of oxidative phosphorylation and of anaerobic glycolysis, respectively. Importantly, this higher metabolic status, which reflects age-associated expansion of pro-inflammatory B cells, is found associated with higher secretion of lactate and autoimmune antibodies after in vitro stimulation. B cells from elderly individuals induce in vitro polarization of CD4+ T cells from young individuals into pro-inflammatory CD4+ T cells through metabolic pathways mediated by lactate, which can be inhibited by targeting lactate enzymes and transporters, as well as signaling pathways supporting anaerobic glycolysis. Lactate also induces immunosenescent B cells that are glycolytic, express transcripts for multiple pro-inflammatory molecules, and are characterized by a higher metabolic status. These results altogether may have relevant clinical implications and suggest alternative targets for therapeutic interventions in the elderly and patients with inflammatory conditions and diseases.
© 2024. The Author(s).

  • Immunology and Microbiology

TFEB activation hallmarks antigenic experience of B lymphocytes and directs germinal center fate decisions.

In Nature Communications on 14 August 2024 by Münchhalfen, M., Goerg, R., et al.

Ligation of the B cell antigen receptor (BCR) initiates humoral immunity. However, BCR signaling without appropriate co-stimulation commits B cells to death rather than to differentiation into immune effector cells. How BCR activation depletes potentially autoreactive B cells while simultaneously primes for receiving rescue and differentiation signals from cognate T lymphocytes remains unknown. Here, we use a mass spectrometry-based proteomic approach to identify cytosolic/nuclear shuttling elements and uncover transcription factor EB (TFEB) as a central BCR-controlled rheostat that drives activation-induced apoptosis, and concurrently promotes the reception of co-stimulatory rescue signals by supporting B cell migration and antigen presentation. CD40 co-stimulation prevents TFEB-driven cell death, while enhancing and prolonging TFEB's nuclear residency, which hallmarks antigenic experience also of memory B cells. In mice, TFEB shapes the transcriptional landscape of germinal center B cells. Within the germinal center, TFEB facilitates the dark zone entry of light-zone-residing centrocytes through regulation of chemokine receptors and, by balancing the expression of Bcl-2/BH3-only family members, integrates antigen-induced apoptosis with T cell-provided CD40 survival signals. Thus, TFEB reprograms antigen-primed germinal center B cells for cell fate decisions.
© 2024. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology
View this product on CiteAb