Product Citations: 25

Calcium levels modulate platelet function, platelet-cancer cell interaction, and cancer cell invasion.

In Scientific Reports on 5 March 2025 by Morris, K., Masri, S., et al.

Platelet-cancer cell interactions play a significant role in metastasis. Indeed, they interact via a plethora of receptors, including integrins (e.g. ⍺IIbβ3 and ⍺vβ3), and calcium is essential for both their stability and function. Additionally, calcium plays a significant role in the coagulation cascade, and the implication of calcium level changes on metastatic dissemination and cancer-associated thrombosis are not fully understood. A significant proportion of cancer patients suffer from hypercalcemia and have a worse prognosis. We hypothesized that calcium levels are important for platelet-cancer cell interactions that are mediated via integrins, thus this can be leveraged to disrupt platelet support to the metastatic process. In this study, we assessed the detection of integrins ⍺IIbβ3 and ⍺vβ3 on platelets and cancer cells, platelet function, and the respective receptors implicated in platelet function, while modulating calcium levels. The effect of calcium levels on platelet-cancer cell interactions and cancer cell invasion in vitro was also assessed. Our data demonstrates that calcium levels affect surface integrins, and receptors involved in platelet-cancer cell interactions. In addition, calcium levels significantly affect platelet activation and aggregation. In our experimental scenarios, calcium depletion modulates platelet-cancer cell interaction with MDA-MB-231 breast cancer cells, while hypercalcemic environments did not affect interaction. Meanwhile, hypercalcemia leads to enhanced cancer cell invasion for both MDA-MB-231 and A549 cells in the presence of platelets. Thus, this study provides a greater understanding of the dynamics associated with the effects of calcium and platelet-cancer cell interactions mediated by integrins.
© 2025. The Author(s).

  • Cancer Research

Platelet and Monocyte Microvesicles as Potential Biomarkers of COVID-19 Severity: A Cross-Sectional Analysis.

In Annals of Laboratory Medicine on 1 September 2024 by Nunki, N., Hernaningsih, Y., et al.

Coronavirus disease (COVID-19) induces inflammation, coagulopathy following platelet and monocyte activation, and fibrinolysis, resulting in elevated D-dimer levels. Activated platelets and monocytes produce microvesicles (MVs). We analyzed the differences in platelet and monocyte MV counts in mild, moderate, and severe COVID-19, as well as their correlation with D-dimer levels.
In this cross-sectional study, blood specimens were collected from 90 COVID-19 patients and analyzed for D-dimers using SYSMEX CS-2500. Platelet MVs (PMVs; PMVCD42b+ and PMVCD41a+), monocyte MVs (MMVs; MMVCD14+), and phosphatidylserine-binding annexin V (PS, AnnV+) were analyzed using a BD FACSCalibur instrument.
PMV and MMV counts were significantly increased in COVID-19 patients. AnnV+ PMVCD42b+ and AnnV+ PMVCD41a+ cell counts were higher in patients with severe COVID-19 than in those with moderate clinical symptoms. The median (range) of AnnV+ PMVCD42b+ (MV/μL) in mild, moderate, and severe COVID-19 was 1,118.3 (328.1-1,910.5), 937.4 (311.4-2,909.5), and 1,298.8 (458.2-9,703.5), respectively (P =0.009). The median (range) for AnnV+ PMVCD41a+ (MV/μL) in mild, moderate, and severe disease was 885.5 (346.3-1,682.7), 663.5 (233.8-2,081.5), and 1,146.3 (333.3-10,296.6), respectively (P =0.007). D-dimer levels (ng/mL) weak correlated with AnnV+ PMVCD41a+ (P =0.047, r=0.258).
PMV PMVCD42b+ and PMVCD41a+ counts were significantly increased in patients with severe clinical symptoms, and PMVCD41a+ counts correlated with D-dimer levels. Therefore, MV counts can be used as a potential biomarker of COVID-19 severity.

  • COVID-19

Dysregulation of platelet serotonin, 14-3-3, and GPIX in sudden infant death syndrome.

In Scientific Reports on 15 May 2024 by Frelinger, A. L., Haynes, R. L., et al.

Sudden infant death syndrome (SIDS) is the leading cause of post-neonatal infant mortality, but the underlying cause(s) are unclear. A subset of SIDS infants has abnormalities in the neurotransmitter, serotonin (5-hydroxytryptamine [5-HT]) and the adaptor molecule, 14-3-3 pathways in regions of the brain involved in gasping, response to hypoxia, and arousal. To evaluate our hypothesis that SIDS is, at least in part, a multi-organ dysregulation of 5-HT, we examined whether blood platelets, which have 5-HT and 14-3-3 signaling pathways similar to brain neurons, are abnormal in SIDS. We also studied platelet surface glycoprotein IX (GPIX), a cell adhesion receptor which is physically linked to 14-3-3. In infants dying of SIDS compared to infants dying of known causes, we found significantly higher intra-platelet 5-HT and 14-3-3 and lower platelet surface GPIX. Serum and plasma 5-HT were also elevated in SIDS compared to controls. The presence in SIDS of both platelet and brainstem 5-HT and 14-3-3 abnormalities suggests a global dysregulation of these pathways and the potential for platelets to be used as a model system to study 5-HT and 14-3-3 interactions in SIDS. Platelet and serum biomarkers may aid in the forensic determination of SIDS and have the potential to be predictive of SIDS risk in living infants.
© 2024. The Author(s).

Ticagrelor inverse agonist activity at the P2Y12 receptor is non-reversible versus its endogenous agonist adenosine 5´-diphosphate.

In British Journal of Pharmacology on 1 January 2024 by Khalil, J., Dimofte, T., et al.

Ticagrelor is labelled as a reversible, direct-acting platelet P2Y12 receptor (P2Y12 R) antagonist that is indicated clinically for the prevention of thrombotic events in patients with acute coronary syndrome (ACS). As with many antiplatelet drugs, ticagrelor therapy increases bleeding risk in patients, which may require platelet transfusion in emergency situations. The aim of this study was to further examine the reversibility of ticagrelor at the P2Y12 R.
Studies were performed in human platelets, with P2Y12 R-stimulated GTPase activity and platelet aggregation assessed. Cell-based bioluminescence resonance energy transfer (BRET) assays were undertaken to assess G protein-subunit activation downstream of P2Y12 R activation.
Initial studies revealed that a range of P2Y12 R ligands, including ticagrelor, displayed inverse agonist activity at P2Y12 R. Only ticagrelor was resistant to washout and, in human platelet and cell-based assays, washing failed to reverse ticagrelor-dependent inhibition of ADP-stimulated P2Y12 R function. The P2Y12 R agonist 2MeSADP, which was also resistant to washout, was able to effectively compete with ticagrelor. In silico docking revealed that ticagrelor and 2MeSADP penetrated more deeply into the orthosteric binding pocket of the P2Y12 R than other P2Y12 R ligands.
Ticagrelor binding to P2Y12 R is prolonged and more akin to that of an irreversible antagonist, especially versus the endogenous P2Y12 R agonist ADP. This study highlights the potential clinical need for novel ticagrelor reversal strategies in patients with spontaneous major bleeding, and for bleeding associated with urgent invasive procedures.
© 2023 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  • Genetics
  • Pharmacology

Lyophilized platelets inhibit platelet aggregation with simultaneous paradoxical promotion of platelet adhesion.

In Frontiers in Bioengineering and Biotechnology on 6 September 2022 by Schnoor, B. & Papa, A. L.

Lyophilized platelets have been explored as a potential hemostatic agent due to their long-term ambient storage capabilities that make them readily available in various scenarios. Additionally, their high biocompatibility and the key role of platelet interactions in various clinical conditions make them a promising platform for drug delivery. To explore these applications and for wider clinical deployment, the interactions between lyophilized platelets and fresh platelets must be examined. This project characterized receptor expression on the lyophilized platelet surface and their ability to bind fibrinogen using flow cytometry. The effect of lyophilized platelets on aggregation of unaltered platelets was assessed using light transmission aggregometry while the effect on adhesion was evaluated using static and microfluidic assays. Lyophilized platelets maintained significant levels of GPIIb and GPVI receptors on their surface, though the expression was reduced from fresh platelets. Additionally, lyophilized platelets maintained GPIb expression similar to fresh platelets. Furthermore, 15.8% of the lyophilized platelets exhibited the active conformation of the GPIIb/IIIa receptor, indicating a significant increase over fresh platelets. Lyophilized platelets also exhibited an increase in exposed phosphatidylserine and fibrinogen binding. Despite the effect of lyophilized platelets in promoting the adhesion of fresh platelets on a collagen-coated surface, their net effect was inhibitory on platelet aggregation. This study demonstrates that lyophilized platelets can have paradoxical effects on platelet adhesion and aggregation, which could have an impact for clinical applications. Detailed characterization and engineering of these effects will be important for their continued development as a drug delivery platform.
Copyright © 2022 Schnoor and Papa.

  • Homo sapiens (Human)
View this product on CiteAb