Product Citations: 30

A molecular atlas of human granulopoiesis

Preprint on Research Square on 3 April 2025 by Klein, C., Hesse, S., et al.

Abstract We developed a comprehensive molecular atlas of human granulopoiesis, encompassing the transcriptome (mRNA), proteome, and non-coding RNA (miRNA, lncRNA) of seven defined stages of neutrophil maturation. Two waves of mRNA transcription activity were observed. Whereas the first wave, extending from myeloblasts to metamyelocytes, showed correlated mRNA transcripts and protein translation, the second wave was characterized by uncoupling of transcription and translation. Integrated analysis revealed intricate dynamics of transcription and translation parallelization in granule subset proteins, ribosomes, and mitochondria, respectively. We identified the hsa-miR-106a-5p family and hsa-miR-125a-5p as potential repressors of myeloid differentiation in myeloblasts, and hsa-miR-193a-5p as a repressor of the SWI/SNF complex. LncRNA transcripts displayed remarkable stage specificity. Whereas NEAT1 and MAILR were expressed only from the band stage onwards, ITGB2-AS1 was expressed exclusively in metamyelocytes. Novel lncRNAs with high expression were found in the terminal S-stage and PMN (ENSG00000288819, ENSG00000203644). A comprehensive analysis of transcription factor signatures, including activity on target genes, revealed previously unrecognized factors as well as a yet underappreciated transcriptional role of lactotransferrin (LTF) in early maturation stages. Characterization of single-cell-clusters via transcriptional profiles of histologically defined maturation stages enabled stage-specific cell labeling. To ensure the availability of our data and the reproducibility of our analysis, our complete datasets, analysis codes and online tool for exploration are available on www.granulopoiesis.com.

Periodontal ligament stem cells (PDLSCs) have the potential for regenerating periodontal tissue. The study aims to investigate the impact of demographics (ages, gender, disease) and culture techniques (shipping storage time and culture method) on the success of primary culture.
PDLSCs were collected from 51 teeth of 26 patients and cultured via outgrowth (OG) and enzymatic digestion (ED) methods. Cells characteristics were confirmed by flow cytometry, MTT, and ARS. The primary culture success rate was evaluated with a serial chi-square test to determine the relationship with culture technique (ED/OG and ≤4 h/prolonged culture) and patient demographics (Young/Old, Female/Male, and Health/Periodontitis).
The overall success rate of Health group (69.7%) was higher than Periodontitis (38.9%). Culturing within 4 h possessed a higher success rate (71.8%) than prolonged group (16.7%) regardless of patient demographics, and using OG method (81.5%) revealed more promising. Subgroup analysis of 39 cases (culture within 4 h) found that the success rate of OG was higher than ED in the Old group (87.5%-25.0%) and in the Periodontitis group (83.3%-25.0%).
Primary culturing of PDLSCs within 4 h and using the outgrowth method led to higher success rates regardless of patient demographics. It can achieve successful PDLSCs culture of older patients or patients with periodontal disease by appropriate culture technique.
© 2023 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V.

  • Stem Cells and Developmental Biology

B-cell acute lymphoblastic leukemia (B-ALL) reflects the malignant counterpart of developing B cells in the bone marrow (BM). Despite tremendous progress in B-ALL treatment, the overall survival of adults at diagnosis and patients at all ages after relapse remains poor. Galectin-1 (GAL1) expressed by BM supportive niches delivers proliferation signals to normal pre-B cells through interaction with the pre-B cell receptor (pre-BCR). Here, we asked whether GAL1 gives non-cell autonomous signals to pre-BCR+ pre-B ALL, in addition to cell-autonomous signals linked to genetic alterations. In syngeneic and patient-derived xenograft (PDX) murine models, murine and human pre-B ALL development is influenced by GAL1 produced by BM niches through pre-BCR-dependent signals, similarly to normal pre-B cells. Furthermore, targeting pre-BCR signaling together with cell-autonomous oncogenic pathways in pre-B ALL PDX improved treatment response. Our results show that non-cell autonomous signals transmitted by BM niches represent promising targets to improve B-ALL patient survival.
© 2023 The Author(s).

  • Cancer Research
  • Immunology and Microbiology

Tumor-associated macrophages (TAM) play a crucial role in immunosuppression. However, how TAMs are transformed into immunosuppressive phenotypes and influence the tumor microenvironment (TME) is not fully understood. Here, we utilized single-cell RNA sequencing and whole-exome sequencing data of glioblastoma (GBM) tissues and identified a subset of TAMs dually expressing macrophage and tumor signatures, which were termed double-positive TAMs. Double-positive TAMs tended to be bone marrow-derived macrophages (BMDM) and were characterized by immunosuppressive phenotypes. Phagocytosis of glioma cells by BMDMs in vitro generated double-positive TAMs with similar immunosuppressive phenotypes to double-positive TAMs in the GBM TME of patients. The double-positive TAMs were transformed into M2-like macrophages and drove immunosuppression by expressing immune-checkpoint proteins CD276, PD-L1, and PD-L2 and suppressing the proliferation of activated T cells. Together, glioma cell phagocytosis by BMDMs in the TME leads to the formation of double-positive TAMs with enhanced immunosuppressive phenotypes, shedding light on the processes driving TAM-mediated immunosuppression in GBM.
Bone marrow-derived macrophages phagocytose glioblastoma cells to form double-positive cells, dually expressing macrophage and tumor signatures that are transformed into M2-like macrophages and drive immunosuppression.
©2023 The Authors; Published by the American Association for Cancer Research.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

Gene therapy involves a substantial loss of hematopoietic stem and progenitor cells (HSPC) during processing and homing. Intra-BM (i.b.m.) transplantation can reduce homing losses, but prior studies have not yielded promising results. We studied the mechanisms involved in homing and engraftment of i.b.m. transplanted and i.v. transplanted genetically modified (GM) human HSPC. We found that i.b.m. HSPC transplantation improved engraftment of hematopoietic progenitor cells (HPC) but not of long-term repopulating hematopoietic stem cells (HSC). Mechanistically, HPC expressed higher functional levels of CXCR4 than HSC, conferring them a retention and homing advantage when transplanted i.b.m. Removing HPC and transplanting an HSC-enriched population i.b.m. significantly increased long-term engraftment over i.v. transplantation. Transient upregulation of CXCR4 on GM HSC-enriched cells, using a noncytotoxic portion of viral protein R (VPR) fused to CXCR4 delivered as a protein in lentiviral particles, resulted in higher homing and long-term engraftment of GM HSC transplanted either i.v. or i.b.m. compared with standard i.v. transplants. Overall, we show a mechanism for why i.b.m. transplants do not significantly improve long-term engraftment over i.v. transplants. I.b.m. transplantation becomes relevant when an HSC-enriched population is delivered. Alternatively, CXCR4 expression on HSC, when transiently increased using a protein delivery method, improves homing and engraftment specifically of GM HSC.

  • FC/FACS
  • Mus musculus (House mouse)
  • Stem Cells and Developmental Biology
View this product on CiteAb