Product Citations: 4

Assaying Candidate Human Skin Keratinocyte Stem Cells by Determining Their Long-Term Serial Proliferative Output in Culture.

In Methods in Molecular Biology (Clifton, N.J.) on 5 May 2022 by Pieterse, Z. & Kaur, P.

Stem cells are found in niches around the body, including the epidermis of the skin, and can be distinguished from their more committed progeny by their high long-term proliferative capacity in vitro. Here we describe a technique used to isolate three main epidermal cell fractions from human neonatal foreskin termed early differentiating (ED), transient amplifying (TA) and keratinocyte stem cells (KSC) based on their differential expression of two cell surface markers: CD49f and CD71. These three fractions were cultivated in parallel in a serial proliferation assay to determine their long-term proliferative output. This assay demonstrates that the KSC fraction had the highest proliferative output (total cell yield) over a long experimental timeframe of 2-3 months, as well as a higher proliferative rate compared to the other two fractions (P > 0.05). This assay can be utilized under similar conditions to determine the proliferative capacity of other putative stem cells using novel stem cell markers for epidermal or other stem cell populations.
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.

  • Biochemistry and Molecular biology
  • Stem Cells and Developmental Biology

Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract.

In Nature Immunology on 1 December 2016 by Xing, J., Weng, L., et al.

The respiratory tract is heavily populated with innate immune cells, but the mechanisms that control such cells are poorly defined. Here we found that the E3 ubiquitin ligase TRIM29 was a selective regulator of the activation of alveolar macrophages, the expression of type I interferons and the production of proinflammatory cytokines in the lungs. We found that deletion of TRIM29 enhanced macrophage production of type I interferons and protected mice from infection with influenza virus, while challenge of Trim29-/- mice with Haemophilus influenzae resulted in lethal lung inflammation due to massive production of proinflammatory cytokines by macrophages. Mechanistically, we demonstrated that TRIM29 inhibited interferon-regulatory factors and signaling via the transcription factor NF-κB by degrading the adaptor NEMO and that TRIM29 directly bound NEMO and subsequently induced its ubiquitination and proteolytic degradation. These data identify TRIM29 as a key negative regulator of alveolar macrophages and might have important clinical implications for local immunity and immunopathology.

  • Immunology and Microbiology

Targeting megakaryocytic-induced fibrosis in myeloproliferative neoplasms by AURKA inhibition.

In Nature Medicine on 1 December 2015 by Wen, Q. J., Yang, Q., et al.

Primary myelofibrosis (PMF) is characterized by bone marrow fibrosis, myeloproliferation, extramedullary hematopoiesis, splenomegaly and leukemic progression. Moreover, the bone marrow and spleens of individuals with PMF contain large numbers of atypical megakaryocytes that are postulated to contribute to fibrosis through the release of cytokines, including transforming growth factor (TGF)-β. Although the Janus kinase inhibitor ruxolitinib provides symptomatic relief, it does not reduce the mutant allele burden or substantially reverse fibrosis. Here we show through pharmacologic and genetic studies that aurora kinase A (AURKA) represents a new therapeutic target in PMF. Treatment with MLN8237, a selective AURKA inhibitor, promoted polyploidization and differentiation of megakaryocytes with PMF-associated mutations and had potent antifibrotic and antitumor activity in vivo in mouse models of PMF. Moreover, heterozygous deletion of Aurka was sufficient to ameliorate fibrosis and other PMF features in vivo. Our data suggest that megakaryocytes drive fibrosis in PMF and that targeting them with AURKA inhibitors has the potential to provide therapeutic benefit.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

FACS enrichment of human keratinocyte stem cells.

In Methods in Molecular Biology (Clifton, N.J.) on 27 October 2004 by Li, A. & Kaur, P.

Recent work from our laboratory has led to the development and validation of fluorescence-activated cell sorting (FACS)-based techniques to prospectively isolate viable keratinocyte stem cells from both human and murine skin. Here we describe a step-by-step method to apply our technique to isolate epidermal keratinocytes from skin tissue, process them for immunofluorescent staining for cell surface markers, and subject them to fluorescence-activated cell sorting to obtain the stem, transient amplifying, and early differentiating keratinocyte fractions. These viable cells can then be placed into culture for further analysis or directly into keratinocyte assays, such as organotypic cultures or in vivo transplantation. This method will be useful for the complete biological characterization of keratinocyte progenitors with respect to wound healing, carcinogenesis, and therapeutic manipulation.

  • Biochemistry and Molecular biology
  • Stem Cells and Developmental Biology
View this product on CiteAb