Product Citations: 48

Lysine succinylation precisely controls normal erythropoiesis.

In Haematologica on 1 February 2025 by Hu, B., Gong, H., et al.

Lysine succinylation (Ksu) has recently emerged as a protein modification that regulates diverse functions in various biological processes. However, the systemic, precise role of lysine succinylation in erythropoiesis remains to be fully elucidated. In this study, we noted a prominent increase of succinyl-CoA and lysine succinylation during human erythroid differentiation. To explore the functional significance of succinylation, we inhibited succinylation by either knocking down key succinyltransferases or overexpressing desuccinylases. Succinylation inhibition led to suppressed cell proliferation, increased apoptosis, and disrupted erythroid differentiation. In vivo overexpression of the desuccinylase SIRT5 delayed erythroid differentiation. Furthermore, integrative proteome and succinylome analysis identified 939 succinylated proteins with 3,562 Ksu sites, distributed across various cellular compartments and involved in multiple cellular processes. Significantly, inconsistencies were observed between protein expression levels and succinylation levels, indicating that the succinylation of certain proteins may function independently of expression. Mechanistically, we implicated KAT2A-mediated succinylation of histone H3 K79, leading to chromatin remodeling and, subsequently, regulation of erythropoiesis. Specifically, we identified CYCS as a key regulator of erythropoiesis, a function that depends on its succinylation sites K28/K40. Taken together, our comprehensive investigation of the succinylation landscape during erythropoiesis provides valuable insights into its regulatory role and offers potential implications for erythroid-related diseases.

  • Cardiovascular biology

In situ correction of various β-thalassemia mutations in human hematopoietic stem cells.

In Frontiers in Cell and Developmental Biology on 9 February 2024 by Yang, Y., He, L., et al.

β-thalassemia (β-thal) is the most common monogenic disorder caused by various mutations in the human hemoglobin β (HBB) gene and affecting millions of people worldwide. Electroporation of Cas9 and single-guide RNA (sgRNA)-ribonucleoprotein (RNP) complex-mediated gene targeting in patient-derived hematopoietic stem cells (HSCs), followed by autologous transplantation, holds the promise to cure patients lacking a compatible bone marrow donor. In this study, a universal gene correction method was devised to achieve in situ correction of most types of HBB mutations by using validated CRISPR/sgRNA-RNP complexes and recombinant adeno-associated viral 6 (rAAV6) donor-mediated homology-directed repair (HDR) in HSCs. The gene-edited HSCs exhibited multi-lineage formation abilities, and the expression of β-globin transcripts was restored in differentiated erythroid cells. The method was applied to efficiently correct different mutations in β-thal patient-derived HSCs, and the edited HSCs retained the ability to engraft into the bone marrow of immunodeficient NOD-scid-IL2Rg-/- (NSI) mice. This study provides an efficient and safe approach for targeting HSCs by HDR at the HBB locus, which provides a potential therapeutic approach for treating other types of monogenic diseases in patient-specific HSCs.
Copyright © 2024 Yang, He, Xie, Zhu, Wu, Fan, Yang and Sun.

  • Stem Cells and Developmental Biology

Comprehensive Characterization and Global Transcriptome Analysis of Human Fetal Liver Terminal Erythropoiesis.

In Genomics, Proteomics Bioinformatics on 1 December 2023 by Han, Y., Wang, S., et al.

The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing (RNA-seq) analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis. Notably, the expression of genes enriched in proteolysis and autophagy was up-regulated in orthochromatic erythroblasts (OrthoEs), suggesting the involvement of these pathways in enucleation. We also performed RNA-seq of in vitro cultured erythroblasts derived from FL CD34+ cells. Comparison of transcriptomes between the primary and cultured erythroblasts revealed significant differences, indicating impacts of the culture system on gene expression. Notably, the expression of lipid metabolism-related genes was increased in cultured erythroblasts. We further immortalized erythroid cell lines from FL and cord blood (CB) CD34+ cells (FL-iEry and CB-iEry, respectively). FL-iEry and CB-iEry were immortalized at the proerythroblast stage and can be induced to differentiate into OrthoEs, but their enucleation ability was very low. Comparison of the transcriptomes between OrthoEs with and without enucleation capability revealed the down-regulation of pathways involved in chromatin organization and mitophagy in OrthoEs without enucleation capacity, indicating that defects in chromatin organization and mitophagy contribute to the inability of OrthoEs to enucleate. Additionally, the expression of HBE1, HBZ, and HBG2 was up-regulated in FL-iEry compared with CB-iEry, and such up-regulation was accompanied by down-regulated expression of BCL11A and up-regulated expression of LIN28B and IGF2BP1. Our study provides new insights into human FL erythropoiesis and rich resources for future studies.
Copyright © 2023 Beijing Institute of Genomics, Chinese Academy of Sciences and Genetics Society of China. Published by Elsevier B.V. All rights reserved.

  • Homo sapiens (Human)

The developmental cartography of human lymphopoiesis remains incompletely understood. Here, we establish a multimodal map demonstrating that lymphoid specification follows independent direct or stepwise hierarchic routes converging toward the emergence of newly characterized CD117lo multi-lymphoid progenitors (MLPs) that undergo a proliferation arrest before entering the CD127- (NK/ILC/T) or CD127+ (B) lymphoid pathways. While the differentiation of CD127- early lymphoid progenitors is mainly driven by Flt3 signaling, emergence of their CD127+ counterparts is regulated cell-intrinsically and depends exclusively on the divisional history of their upstream precursors, including hematopoietic stem cells. Further, transcriptional mapping of differentiation trajectories reveals that whereas myeloid granulomonocytic lineages follow continuous differentiation pathways, lymphoid trajectories are intrinsically discontinuous and characterized by sequential waves of cell proliferation allowing pre-commitment amplification of lymphoid progenitor pools. Besides identifying new lymphoid specification pathways and regulatory checkpoints, our results demonstrate that NK/ILC/T and B lineages are under fundamentally distinct modes of regulation. (149 words).
© 2023 The Author(s).

Comprehensive Characterization and Global Transcriptome Analyses of Human Fetal Liver Terminal Erythropoiesis

Preprint on BioRxiv : the Preprint Server for Biology on 15 June 2023 by Han, Y., Wang, S., et al.

The fetal liver (FL) is the key erythropoietic organ during fetal development, but knowledge on human FL erythropoiesis is very limited. In this study, we sorted primary erythroblasts from FL cells and performed RNA sequencing analyses. We found that temporal gene expression patterns reflected changes in function during primary human FL terminal erythropoiesis. Notably, expression of genes enriched in proteolysis and autophagy was upregulated in orthochromatic erythroblasts (OrthoE), suggesting involvement of these pathways in enucleation. We also performed RNA sequencing of in vitro cultured erythroblasts derived from FL CD34 + cells. Comparison of transcriptomes between the primary and cultured erythroblasts revealed significant differences, indicating impacts of the culture system on gene expression. Notably, lipid metabolism gene expression was increased in cultured erythroblasts. We further immortalized erythroid cell lines from FL and cord blood (CB) CD34 + cells (FL-iEry and CB-iEry, respectively). FL-iEry and CB-iEry are immortalized at the proerythroblast stage and can be induced to differentiate into OrthoE, but their enucleation ability is very low. Comparison of transcriptomes between OrthoE with and without enucleation capability revealed downregulation of pathways involved in chromatin organization and mitophagy in OrthoE without enucleation capacity, indicating that defects in chromatin organization and mitophagy contribute to the inability of OrthoE to enucleate. Additionally, the expression levels of HBE1 , HBZ , and HBG2 were upregulated in FL-iEry compared with CB-iEry, and this was accompanied by downregulation of BCL11A and upregulation of LIN28B and IGF2BP1 . Our study provides new insights into human FL erythropoiesis and rich resources for future studies.

  • Homo sapiens (Human)
View this product on CiteAb