Product Citations: 48

Serum factors create species-specific barriers to hepatic gene transfer by lipid nanoparticles in liver-humanized mice.

In Molecular Therapy. Methods Clinical Development on 12 June 2025 by Stone, D., Takeuchi, R., et al.

Lipid nanoparticles (LNPs) can efficiently deliver nucleic acid therapeutics to a range of tissues, particularly hepatocytes to treat diseases of the liver. We initially investigated whether three LNPs with different ionizable lipids, previously validated in non-human primates (NHPs), could deliver functional GFP mRNA to human hepatocytes in chimeric NSG-PiZ and FRG mice. After intravenous delivery, GFP expression was observed throughout the livers but was restricted to mouse hepatocytes because the payload mRNA was not internalized by human hepatocytes. LNP transfection was also restricted to mouse hepatocytes in NSG-PiZ mice administered a different LNP containing the ionizable lipid SM-102. In vitro, primary human hepatocytes (PHHs) were transfected by LNPs containing lipids SM-102, LP01, or ALC0315 in the presence of normal mouse serum, but not chimeric NSG-PiZ serum. SM-102 LNP transfection of PHH was also inhibited by naive untransplanted NSG-PiZ serum. However, serum from NSG mice supported PHH transfection by SM-102 LNP. These results suggest that inhibitory factors in NSG-PiZ mouse serum are responsible for the lack of human hepatocyte transduction in chimeric mice. Finally, we found that LNPs displaying trivalent N-acetylgalactosamine (TriGalNAc), which targets them to the asialoglycoprotein receptor, can overcome species restriction, transfecting both mouse and human hepatocytes in chimeric NSG-PiZ mice.
© 2025 The Authors. Published by Elsevier Inc. on behalf of The American Society of Gene and Cell Therapy.

Inhibition of polymorphonuclear cells averts cytotoxicity against hypoimmune cells in xenotransplantation.

In Nature Communications on 18 April 2025 by Hu, X., Tediashvili, G., et al.

Allogeneic, immune-evasive hypoimmune (HIP) cell therapeutics that are HLA-depleted and overexpress CD47 create the opportunity to treat immunocompetent patients with cancer, degenerative, or autoimmune diseases. However, HIP cell therapy has not yet been established for xenotransplantation. Here we engineer, for human-to-non-human primate studies, human HIP* endothelial cells (EC) that are HLA-depleted and express macaque CD47 to allow compatibility with the macaque SIRPα immune checkpoint. Although no T cell, NK cell, or macrophage responses and no antibody-dependent cytotoxicity is observed in cynomolgus recipients, we reveal that macaque polymorphonuclear cells (PMN) show strong xenogeneic cytotoxicity against HIP* ECs. Inhibition of PMN killing using a multi-drug regimen leads to improved xenogeneic human HIP* EC survival in cynomolgus monkeys. Similarly, human PMNs show xenoreactivity against pig ECs, which has implications for clinical xenotransplantation. Accordingly, our engineered pig HIP* ECs that are SLA-depleted, overexpress human CD47, and additionally overexpress the PMN-inhibitory ligands CD99 and CD200, are protected against all human adaptive and innate cytotoxicity, including PMNs. In summary, specific targeting of PMN-mediated killing of the transplanted cells might improve outcomes for clinical pig-to-human xenotransplantation.
© 2025. The Author(s).

Presentation of metabolites by the major histocompatibility complex class I-related protein 1 (MR1) molecule to mucosal-associated invariant T cells is impaired during herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) infections. This is surprising given these viruses do not directly synthesise MR1 ligands. We have previously identified several HSV proteins responsible for rapidly downregulating the intracellular pool of immature MR1, effectively inhibiting new surface antigen presentation, while preexisting ligand-bound mature MR1 is unexpectedly upregulated by HSV-1. Using flow cytometry, immunoblotting, and high-throughput fluorescence microscopy, we demonstrate that the endocytosis of surface MR1 is impaired during HSV infection and that internalized molecules accumulate in EEA1-labeled early endosomes, avoiding degradation. We establish that the short MR1 cytoplasmic tail is not required for HSV-1-mediated downregulation of immature molecules; however it may play a role in the retention of mature molecules on the surface and in early endosomes. We also determine that the HSV-1 US3 protein, the shorter US3.5 kinase and the full-length HSV-2 homolog, all predominantly target mature surface rather than total MR1 levels. We propose that the downregulation of intracellular and cell surface MR1 molecules by US3 and other HSV proteins is an immune-evasive countermeasure to minimize the effect of impaired MR1 endocytosis, which might otherwise render infected cells susceptible to MR1-mediated killing by mucosal-associated invariant T cells.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • Biochemistry and Molecular biology
  • Cell Biology
  • Immunology and Microbiology

Enhancing immunotherapy through PD-L1 upregulation: the promising combination of anti-PD-L1 plus mTOR inhibitors.

In Molecular Oncology on 11 September 2024 by Hernández-Prat, A., Rodríguez-Vida, A., et al.

Immune checkpoint inhibitors (ICIs) targeting the programmed cell death protein 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) pathway have transformed urothelial cancer (UC) therapy. The correlation between PD-L1 expression and ICI effectiveness is uncertain, leaving the role of PD-L1 as a predictive marker for ICI efficacy unclear. Among several ways to enhance the efficacy of ICI, trials are exploring combining ICIs with serine/threonine-protein kinase mTOR (mTOR) inhibitors in different tumor types. The potential interaction between mTOR inhibitors and PD-L1 expression in UC has not been well characterized. In our study, we investigated how phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway inhibitors (TAK-228, everolimus and TAK-117) affect PD-L1 expression and function in preclinical bladder cancer cell models. TAK-228 increased cell surface levels of glycosylated PD-L1 in all but one of the seven cell lines, regardless of baseline levels. TAK-228 promoted the secretion of epidermal growth factor (EGF) and interferon-β (IFNβ), both linked to PD-L1 protein induction. Blocking EGF and IFNβ receptors reversed the TAK-228-induced PD-L1 increase. Additionally, TAK-228 enhanced IFN-γ-induced PD-L1 expression and intracellular HLA-I levels in some cells. TAK-228-treated bladder cancer cells exhibited resistance to the cytotoxic effects of peripheral blood mononuclear cells (PBMCs) and cluster of differentiation 8 (CD8)+ T cells. The addition of an anti-PD-L1 antibody diminished this resistance in T24 cells. Increased expression of PD-L1 under TAK-228 exposure was confirmed in patient-derived explants (PDEs) treated ex vivo. These preclinical findings suggest that mTOR inhibition with TAK-228 can increase PD-L1 levels, potentially impacting the specific immune response against UC cells. This highlights the rationale for exploring the combination of mTOR inhibitors with ICIs in patients with advanced UC.
© 2024 The Author(s). Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  • FC/FACS
  • Immunology and Microbiology

It is unknown how intestinal B cell populations and B cell receptor (BCR) repertoires are established and maintained over time in humans. Following intestinal transplantation (ITx), surveillance ileal mucosal biopsies provide a unique opportunity to map the dynamic establishment of recipient gut lymphocyte populations in immunosuppressed conditions.
Using polychromatic flow cytometry that includes HLA allele group-specific antibodies distinguishing donor from recipient cells along with high throughput BCR sequencing, we tracked the establishment of recipient B cell populations and BCR repertoire in the allograft mucosa of ITx recipients.
We confirm the early presence of naïve donor B cells in the circulation (donor age range: 1-14 years, median: 3 years) and, for the first time, document the establishment of recipient B cell populations, including B resident memory cells, in the intestinal allograft mucosa (recipient age range at the time of transplant: 1-44 years, median: 3 years). Recipient B cell repopulation of the allograft was most rapid in infant (<1 year old)-derived allografts and, unlike T cell repopulation, did not correlate with rejection rates. While recipient memory B cell populations were increased in graft mucosa compared to circulation, naïve recipient B cells remained detectable in the graft mucosa for years. Comparisons of peripheral and intra-mucosal B cell repertoires in the absence of rejection (recipient age range at the time of transplant: 1-9 years, median: 2 years) revealed increased BCR mutation rates and clonal expansion in graft mucosa compared to circulating B cells, but these parameters did not increase markedly after the first year post-transplant. Furthermore, clonal mixing between the allograft mucosa and the circulation was significantly greater in ITx recipients, even years after transplantation, than in deceased adult donors. In available pan-scope biopsies from pediatric recipients, we observed higher percentages of naïve recipient B cells in colon allograft compared to small bowel allograft and increased BCR overlap between native colon vs colon allograft compared to that between native colon vs ileum allograft in most cases, suggesting differential clonal distribution in large intestine vs small intestine.
Collectively, our data demonstrate intestinal mucosal B cell repertoire establishment from a circulating pool, a process that continues for years without evidence of stabilization of the mucosal B cell repertoire in pediatric ITx patients.
Copyright © 2024 Fu, Hsiao, Waffarn, Meng, Long, Frangaj, Jones, Gorur, Shtewe, Li, Muntnich, Rogers, Jiao, Velasco, Matsumoto, Kubota, Wells, Danzl, Ravella, Iuga, Vasilescu, Griesemer, Weiner, Farber, Luning Prak, Martinez, Kato, Hershberg and Sykes.

  • Immunology and Microbiology
View this product on CiteAb