Product Citations: 15

To enable robust expression of transgenes in stem cells, recombinase-mediated cassette exchange at safe harbor loci is frequently adopted. The choice of recombinase enzyme is a critical parameter to ensure maximum efficiency and accuracy of the integration event. We have explored the serine recombinase family of site-specific integrases and have directly compared the efficiency of PhiC31, W-beta, and Bxb1 integrase for targeted transgene integration at the Gt(ROSA)26Sor locus in mouse embryonic stem cells. All 3 integrases were found to be suitable for efficient engineering and long-term expression of each integrase was compatible with pluripotency, as evidenced by germline transmission. Bxb1 integrase was found to be 2-3 times more efficient than PhiC31 and W-beta. The Bxb1 system was adapted for cassette exchange at the AAVS1 locus in human induced pluripotent stem (iPS) cells, and the 2 commonly used ubiquitous promoters, CAG and Ef1α (EIF1A), were tested for their suitability in driving expression of the integrated transgenic cargo. AAVS1-integrated Ef1α promoter led to a very mosaic pattern of expression in targeted hiPS cells, whereas the AAVS1-integrated CAG promoter drove consistent and stable expression. To validate the system for the integration of functional machinery, the Bxb1 integrase system was used to integrate CAG-driven CRISPR-activation and CRISPR-inhibition machinery in human iPS cells and robust sgRNA-induced up- and downregulation of target genes was demonstrated.
© The Author(s) 2025. Published by Oxford University Press.

  • Stem Cells and Developmental Biology

Retinal degeneration (RD), a group of diseases leading to irreversible vision loss, is characterised by retinal pigment epithelium (RPE) or retinal neuron damage and loss. With fewer risks of immune rejection and tumorigenesis, stem cell-secreted extracellular vesicles (EVs) offer a new cell-free therapeutic paradigm for RD, which remains to be investigated. Human retinal organoid-derived retinal progenitor cells (hERO-RPCs) are an easily accessible and advanced cell source for RD treatment. However, hERO-RPCs-derived EVs require further characterisation. Here, we compared the characteristics of EVs from hERO-RPCs (hRPC-EVs) with those of human embryonic stem cell (hESC)-derived EVs (hESC-EVs) as controls. Based on in-depth proteomic analysis, we revealed remarkable differences between hRPC-EVs and hESC-EVs. A comparison between EVs and their respective cells of origin demonstrated that the protein loading of hRPC-EVs was more selective than that of hESC-EVs. In particular, hESC-EVs were enriched with proteins related to angiogenesis and cell cycle, whereas hRPC-EVs were enriched with proteins associated with immune modulation and retinal development. More importantly, compared with that of hESC-EVs, hRPC-EVs exhibited a lower correlation with cell proliferation and a unique capacity to regulate lipid metabolism. It was further confirmed that hRPC-EVs potentially eliminated lipid deposits, inhibited lipotoxicity and oxidative stress, and enhanced phagocytosis and survival of oleic acid-treated ARPE-19 cells. Mechanistically, hRPC-EVs are integrated into the mitochondrial network of oleic acid-treated ARPE-19 cells, and increased the level of mitochondrial fatty acid β-oxidation-related proteins. Thus, organoid-derived hRPC-EVs represent a promising source of cell-free therapy for RD, especially for blinding diseases related to abnormal lipid metabolism in RPE cells.
© 2023 The Authors. Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology

Differential regulatory T cell signature after recovery from mild COVID-19.

In Frontiers in Immunology on 28 March 2023 by de Sousa Palmeira, P. H., Peixoto, R. F., et al.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by a range of symptoms in which host immune response have been associated with disease progression. However, the putative role of regulatory T cells (Tregs) in determining COVID-19 outcomes has not been thoroughly investigated. Here, we compared peripheral Tregs between volunteers not previously infected with SARS-CoV-2 (healthy control [HC]) and volunteers who recovered from mild (Mild Recovered) and severe (Severe Recovered) COVID-19. Peripheral blood mononuclear cells (PBMC) were stimulated with SARS-CoV-2 synthetic peptides (Pool Spike CoV-2 and Pool CoV-2) or staphylococcal enterotoxin B (SEB). Results of a multicolor flow cytometric assay showed higher Treg frequency and expression of IL-10, IL-17, perforin, granzyme B, PD-1, and CD39/CD73 co-expression in Treg among the PBMC from the Mild Recovered group than in the Severe Recovered or HC groups for certain SARS-CoV-2 related stimulus. Moreover, Mild Recovered unstimulated samples presented a higher Tregs frequency and expression of IL-10 and granzyme B than did that of HC. Compared with Pool CoV-2 stimuli, Pool Spike CoV-2 reduced IL-10 expression and improved PD-1 expression in Tregs from volunteers in the Mild Recovered group. Interestingly, Pool Spike CoV-2 elicited a decrease in Treg IL-17+ frequency in the Severe Recovered group. In HC, the expression of latency-associated peptide (LAP) and cytotoxic granule co-expression by Tregs was higher in Pool CoV-2 stimulated samples. While Pool Spike CoV-2 stimulation reduced the frequency of IL-10+ and CTLA-4+ Tregs in PBMC from volunteers in the Mild Recovered group who had not experienced certain symptoms, higher levels of perforin and perforin+granzyme B+ co-expression by Tregs were found in the Mild Recovered group in volunteers who had experienced dyspnea. Finally, we found differential expression of CD39 and CD73 among volunteers in the Mild Recovered group between those who had and had not experienced musculoskeletal pain. Collectively, our study suggests that changes in the immunosuppressive repertoire of Tregs can influence the development of a distinct COVID-19 clinical profile, revealing that a possible modulation of Tregs exists among volunteers of the Mild Recovered group between those who did and did not develop certain symptoms, leading to mild disease.
Copyright © 2023 de Sousa Palmeira, Peixoto, Csordas, de Medeiros, de Azevedo, Veras, Janebro, Amaral and Keesen.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology

Characterization of Regulatory T Cells in Patients Infected by Leishmania Infantum.

In Tropical Medicine and Infectious Disease on 27 December 2022 by Peixoto, R. F., Gois, B. M., et al.

High IL-10 levels are pivotal to parasite survival in visceral leishmaniasis (VL). Antigenic stimuli induce IL-10 expression and release of adenosine by CD39/CD73. Due their intrinsic ability to express IL-10 and produce adenosine from extracellular ATP, we evaluated the IL-10, CD39, and CD73 expression by Regulatory T cells (Treg) correlated with VL pathology. Using flow cytometry, Treg cells was analyzed in peripheral blood samples from VL patients (in the presence and absence of Leishmania infantum soluble antigen (SLA)) and healthy individuals (negative endemic control-NEC group), without any treatment. Additionally, IL-10 levels in leukocytes culture supernatant were measured in all groups by ELISA assay. VL patients presented more Treg frequency than NEC group, independently of stimulation. ELISA results demonstrated that SLA induced higher IL-10 expression in the VL group. However, the NEC group had a higher Treg IL-10+ compared to the VL group without stimulation and SLA restored the IL-10 in Treg. Additionally, an increase in Treg CD73+ in the VL group independently of stimuli compared to that in the NEC group was observed. We suggest that Treg are not the main source of IL-10, while the CD73 pathway may be an attempt to modulate the exacerbation of immune response in VL disease.

  • FC/FACS
  • Homo sapiens (Human)
  • Immunology and Microbiology

Is IFN expression by NK cells a hallmark of severe COVID-19?

In Cytokine on 1 September 2022 by Csordas, B. G., de Sousa Palmeira, P. H., et al.

Natural Killer cells (NK) are crucial in host defense against viruses. There are many unanswered questions about the immune system in COVID-19, especially the mechanisms that contribute to the development of mild or severe forms of the disease. Although NK cells may have an essential role in the pathogenesis of COVID-19, the mechanisms involved in this process are not yet fully elucidated. Here, we demonstrate that CD3-CD56+ NK cells frequency in the volunteers who recovered from mild COVID-19 (Mild CoV) presented a significant increase compared to the healthy control (HC) and individuals recovering from severe COVID-19 (Severe CoV) groups. Furthermore, distinct IFN profiles in recovered COVID-19 patients with mild or severe clinical forms of the disease were observed in the total NK cells (CD3-CD56+). In the first group, NK cells express increased levels of IFN-α compared to the severe CoV, while higher production of IFN-γ in severe CoV was found. Moreover, NK cells in mild CoV express more cytolytic granules depicted by granzyme B and perforin. Compared to HC, PBMCs from mild CoV presented higher Ki-67 and TIM-3 production after Pool CoV-2 and Pool Spike CoV-2 peptides stimulus. In addition, non-stimulated PBMCs in the mild CoV group had higher NK TIM-3+ frequency than severe CoV. In the mild CoV group, Pool Spike CoV-2 and Pool CoV-2 peptides stimuli elicited higher granzyme B and perforin coexpression and IFN-α production by PBMCs. However, in severe CoV, Pool Spike CoV-2 reduced the coexpression of granzyme B, perforin, and CD107a suggesting a decrease in the cytotoxic activity of NK cells. Therefore, our study shows that NK cells may have a crucial role in COVID-19 with the involvement of IFN-α and cytotoxic properties that aid in developing qualified immune responses. Furthermore, the data suggest that higher amounts of IFN-γ may be linked to the severity of this disease.
Copyright © 2022 Elsevier Ltd. All rights reserved.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology
View this product on CiteAb