Product Citations: 26

The Proteome Profile of Olfactory Ecto-Mesenchymal Stem Cells-Derived from Patients with Familial Alzheimer's Disease Reveals New Insights for AD Study.

In International Journal of Molecular Sciences on 9 August 2023 by Rochín-Hernández, L. J., Jiménez-Acosta, M. A., et al.

Alzheimer's disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment, and its pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer's Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second compared carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in the pre-symptom stages. Finally, we analyzed the differentially expressed proteins (DEPs) for biological and functional enrichment. These proteins showed impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways, in line with previous AD reports. Our study is the first to conduct a proteomic analysis of MSCs from the Jalisco FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies.

  • Homo sapiens (Human)
  • Neuroscience
  • Stem Cells and Developmental Biology

Alzheimer's disease (AD), the most common neurodegenerative disease and the first cause of dementia worldwide, has no effective treatment yet, and AD's pathological mechanisms are not yet fully understood. We conducted this study to explore the proteomic differences associated with Familial Alzheimer's Disease (FAD) in olfactory ecto-mesenchymal stem cells (MSCs) derived from PSEN1 (A431E) mutation carriers compared with healthy donors paired by age and gender through two label-free liquid chromatography-mass spectrometry approaches. The first analysis compared carrier 1 (patient with symptoms, P1) and its control (healthy donor, C1), and the second the Carrier 2 (patient with pre-symptoms, P2) with its respective control cells (C2) to evaluate whether the protein alterations presented in the symptomatic carrier were also present in pre-symptoms stages. Finally, we analyzed the differential expressed proteins (DEPs) for biological and functional enrichment. These proteins showed an impaired expression in a stage-dependent manner and are involved in energy metabolism, vesicle transport, actin cytoskeleton, cell proliferation, and proteostasis pathways resembling previous AD reports. Our study is the first proteomic analysis in MSCs from FAD patients in two stages of the disease (symptomatic and presymptomatic), showing these cells as a new and excellent in vitro model for future AD studies.

  • Homo sapiens (Human)
  • Neuroscience
  • Stem Cells and Developmental Biology

Mesenchymal stem cell (MSC) transplantation alleviates metabolic defects in diseased recipient cells by intercellular mitochondrial transport (IMT). However, the effect of host metabolic conditions on IMT and thereby on the therapeutic efficacy of MSCs has largely remained unexplored. Here we found impaired mitophagy, and reduced IMT in MSCs derived from high-fat diet (HFD)-induced obese mouse (MSC-Ob). MSC-Ob failed to sequester their damaged mitochondria into LC3-dependent autophagosomes due to decrease in mitochondrial cardiolipin content, which we propose as a putative mitophagy receptor for LC3 in MSCs. Functionally, MSC-Ob exhibited diminished potential to rescue mitochondrial dysfunction and cell death in stress-induced airway epithelial cells. Pharmacological modulation of MSCs enhanced cardiolipin-dependent mitophagy and restored their IMT ability to airway epithelial cells. Therapeutically, these modulated MSCs attenuated features of allergic airway inflammation (AAI) in two independent mouse models by restoring healthy IMT. However, unmodulated MSC-Ob failed to do so. Notably, in human (h)MSCs, induced metabolic stress associated impaired cardiolipin-dependent mitophagy was restored upon pharmacological modulation. In summary, we have provided the first comprehensive molecular understanding of impaired mitophagy in obese-derived MSCs and highlight the importance of pharmacological modulation of these cells for therapeutic intervention. A MSCs obtained from (HFD)-induced obese mice (MSC-Ob) show underlying mitochondrial dysfunction with a concomitant decrease in cardiolipin content. These changes prevent LC3-cardiolipin interaction, thereby reducing dysfunctional mitochondria sequestration into LC3-autophagosomes and thus impaired mitophagy. The impaired mitophagy is associated with reduced intercellular mitochondrial transport (IMT) via tunneling nanotubes (TNTs) between MSC-Ob and epithelial cells in co-culture or in vivo. B Pyrroloquinoline quinone (PQQ) modulation in MSC-Ob restores mitochondrial health, cardiolipin content, and thereby sequestration of depolarized mitochondria into the autophagosomes to alleviate impaired mitophagy. Concomitantly, MSC-Ob shows restoration of mitochondrial health upon PQQ treatment (MSC-ObPQQ). During co-culture with epithelial cells or transplantation in vivo into the mice lungs, MSC-ObPQQ restores IMT and prevents epithelial cell death. C Upon transplantation in two independent allergic airway inflammatory mouse models, MSC-Ob failed to rescue the airway inflammation, hyperactivity, metabolic changes in epithelial cells. D PQQ modulated MSCs restored these metabolic defects and restored lung physiology and airway remodeling parameters.
© 2023. The Author(s).

  • FC/FACS
  • Mus musculus (House mouse)
  • Cell Biology
  • Stem Cells and Developmental Biology

Inside tumors, cancer cells display several mechanisms to create an immunosuppressive environment. On the other hand, by migration processes, mesenchymal stromal cells (MSCs) can be recruited by different cancer tumor types from tissues as distant as bone marrow and contribute to tumor pathogenesis. However, the impact of the immunoregulatory role of MSCs associated with the aggressiveness of breast cancer cells by soluble molecules has not been fully elucidated. Therefore, this in vitro work aimed to study the effect of the conditioned medium of human bone marrow-derived-MSCs (hBM-MSC-cm) on the immunoregulatory capability of MDA-MB-231 and BT-474 breast cancer cells. The hBM-MSC-cm on MDA-MB-231 cells induced the overexpression of TGF-β, IDO, and IL-10 genes. Additionally, immunoregulation assays of mononuclear cells (MNCs) in co-culture with MDA-MB-231 and hBM-MSC-cm decreased lymphocyte proliferation, and increased proteins IL-10, TGF-β, and IDO while also reducing TNF levels, shooting the proportion of regulatory T cells. Conversely, the hBM-MSC-cm did not affect the immunomodulatory capacity of BT-474 cells. Thus, a differential immunoregulatory effect was observed between both representative breast cancer cell lines from different origins. Thus, understanding the immune response in a broader tumor context could help to design therapeutic strategies based on the aggressive behavior of tumor cells.

  • Homo sapiens (Human)
  • Cancer Research

Production enhancement of human adipose-derived mesenchymal stem cells by low-intensity ultrasound stimulation.

In Scientific Reports on 21 December 2022 by Min, S., Byeon, Y., et al.

Low-intensity ultrasound (LIUS) enhances the proliferation rate of various mammalian stem cells through mechanical stimulation. This study quantitively finds suitable LIUS stimulation parameters for increasing the proliferation rate of human adipose-derived mesenchymal stem cells (hAdMSCs) for mass production. Various stimulation conditions of LIUS were assessed based on the beam pattern of the ultrasonic transducer and the attenuation of the sound waves. Using optimal LIUS stimulation parameters for enhancing proliferation of hAdMSCs taken from bromodeoxyuridine (BrdU) incorporation assay, long-term culture of hAdMSCs was performed for 16 days. The resultant hAdMSCs were characterized for various biomarkers such as CD34-, CD45-, CD73+, CD95+, CD105+ and cytological staining and a cytokine array assay. LIUS stimulation parameters found for enhancing the hAdMSCs proliferation were the frequency of 5 MHz, an intensity of 300 mWcm-2, a duration of 10 min per day, and continuous waves with a 100% duty cycle. The LIUS stimulated hAdMSCs group showed a 3.25-fold increase in the cell number compared to the control group after 16 days of culture. By confirming the effects of quantitatively measured LIUS stimulation on the enhancement of hAdMSCs proliferation, this study may be a foundation for the applications of LIUS stimulation in the industrial-scale production of hAdMSCs.
© 2022. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Stem Cells and Developmental Biology
View this product on CiteAb