Product Citations: 12

Differential Immune Profiles in Two Pandemic Influenza A(H1N1)pdm09 Virus Waves at Pandemic Epicenter.

In Archives of Medical Research on 1 November 2015 by Arriaga-Pizano, L., Ferat-Osorio, E., et al.

Severe influenza A(H1N1)pdm2009 virus infection cases are characterized by sustained immune activation during influenza pandemics. Seasonal flu data suggest that immune mediators could be modified by wave-related changes. Our aim was to determine the behavior of soluble and cell-related mediators in two waves at the epicenter of the 2009 influenza pandemic.
Leukocyte surface activation markers were studied in serum from peripheral blood samples, collected from the 1(st) (April-May, 2009) and 2(nd) (October 2009-February 2010) pandemic waves. Patients with confirmed influenza A(H1N1)pdm2009 virus infection (H1N1), influenza-like illness (ILI) or healthy donors (H) were analyzed.
Serum IL-6, IL-4 and IL-10 levels were elevated in H1N1 patients from the 2(nd) pandemic wave. Additionally, the frequency of helper and cytotoxic T cells was reduced during the 1(st) wave, whereas CD69 expression in helper T cells was increased in the 2(nd) wave for both H1N1 and ILI patients. In contrast, CD62L expression in granulocytes from the ILI group was increased in both waves but in monocytes only in the 2(nd) wave. Triggering Receptor Expressed on Myeloid cells (TREM)-1 expression was elevated only in H1N1 patients at the 1(st) wave.
Our results show that during the 2009 influenza pandemic a T cell activation phenotype is observed in a wave-dependent fashion, with an expanded activation in the 2(nd) wave, compared to the 1(st) wave. Conversely, granulocyte and monocyte activation is infection-dependent. This evidence collected at the pandemic epicenter in 2009 could help us understand the differences in the underlying cellular mechanisms that drive the wave-related immune profile behaviors that occur against influenza viruses during pandemics.
Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  • Immunology and Microbiology

Hypoxia/Reoxygenation Inhibits P2Y11 Receptor Expression and Its Immunosuppressive Activity in Human Dendritic Cells.

In The Journal of Immunology on 15 July 2015 by Chadet, S., Ivanes, F., et al.

High concentrations of extracellular ATP (eATP) resulting from cell damage may be found during an ischemia/reperfusion (I/R) episode at the site of injury. eATP activates purinergic receptors in dendritic cells (DCs) and may inhibit inflammation. This immunosuppressive activity could be of interest in the field of I/R, which is an inflammatory condition involved in myocardial infarction, stroke, and solid organ transplantation. However, the specific purinergic receptor responsible for this effect remains to be identified. In this study, we report that eATP induced maturation of human monocyte-derived DCs. Additionally, eATP inhibited IL-12 production whereas IL-10 levels remained unchanged in activated DCs. These effects were prevented by the P2Y11R antagonist NF340. Interestingly, a 5-h hypoxia prevented the effects of eATP on cytokine production whereas a 1-h hypoxia did not affect the eATP-mediated decrease of IL-12 and IL-6. We showed a time-dependent downregulation of P2Y11R at both mRNA and protein levels that was prevented by knocking down hypoxia-inducible factor-1α. In this study, we showed an immunosuppressive role of P2Y11R in human DCs. Additionally, we demonstrated that the time-dependent downregulation of P2Y11R by hypoxia orientates DCs toward a proinflammatory phenotype that may be involved in post-I/R injuries as observed after organ transplantation.
Copyright © 2015 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology

T-helper 17 cell polarization in pulmonary arterial hypertension.

In Chest on 1 June 2015 by Hautefort, A., Girerd, B., et al.

Inflammation may contribute to the pathobiology of pulmonary arterial hypertension (PAH). Deciphering the PAH fingerprint on the inflammation orchestrated by dendritic cells (DCs) and T cells, key driver and effector cells, respectively, of the immune system, may allow the identification of immunopathologic approaches to PAH management.
Using flow cytometry, we performed immunophenotyping of monocyte-derived DCs (MoDCs) and circulating lymphocytes from patients with idiopathic PAH and control subjects. With the same technique, we performed cytokine profiling of both populations following stimulation, coculture, or both. We tested the immunomodulatory effects of a glucocorticoid (dexamethasone [Dex]) on this immunophenotype and cytokine profile. Using an epigenetic approach, we confirmed the immune polarization in blood DNA of patients with PAH.
The profile of membrane costimulatory molecules of PAH MoDCs was similar to that of control subjects. However, PAH MoDCs retained higher levels of the T-cell activating molecules CD86 and CD40 after Dex pretreatment than did control MoDCs. This was associated with an increased expression of IL-12p40 and a reduced migration toward chemokine (C-C motif) ligand 21. Moreover, both with and without Dex, PAH MoDCs induced a higher activation and proliferation of CD4+ T cells, associated with a reduced expression of IL-4 (T helper 2 response) and a higher expression of IL-17 (T helper 17 response). Purified PAH CD4+ T cells expressed a higher level of IL-17 after activation than did those of control subjects. Lastly, there was significant hypomethylation of the IL-17 promoter in the PAH blood DNA as compared with the control blood.
We have highlighted T helper 17 cell immune polarization in patients with PAH, as has been previously demonstrated in other chronic inflammatory and autoimmune conditions.

  • Cardiovascular biology

Abnormal activity of innate immune cells and T-helper (Th) 17 cells has been implicated in the pathogenesis of autoimmune and inflammatory diseases, including Crohn's disease (CD). Intestinal innate immune (myeloid) cells have been found to induce development of Th17 cells in mice, but it is not clear if this occurs in humans or in patients with CD. We investigated whether human intestinal lamina propria cells (LPCs) induce development of Th17 cells and whether these have a role in the pathogenesis of CD.
Normal intestinal mucosa samples were collected from patients with colorectal cancer and noninflamed and inflamed regions of mucosa were collected from patients with CD. LPCs were isolated by enzymatic digestion and analyzed for expression of HLA-DR, lineage markers CD14 and CD163 using flow cytometry.
Among HLA-DR(high) Lin(-) cells, we identified a subset of CD14(+) CD163(low) cells in intestinal LPCs; this subset expressed Toll-like receptor (TLR) 2, TLR4, and TLR5 mRNAs and produced interleukin (IL)-6, IL-1β, and tumor necrosis factor in response to lipopolysaccharide. In vitro co-culture with naïve T cells revealed that CD14(+) CD163(low) cells induced development of Th17 cells. CD14(+) CD163(low) cells from inflamed regions of mucosa of patients with CD expressed high levels of IL-6, IL-23p19, and tumor necrosis factor mRNAs, and strongly induced Th17 cells. CD14(+) CD163(low) cells from the noninflamed mucosa of patients with CD also had increased abilities to induce Th17 cells compared with those from normal intestinal mucosa.
CD14(+) CD163(low) cells in intestinal LPCs from normal intestinal mucosa induce differentiation of naive T cells into Th17 cells; this activity is increased in mucosal samples from patients with CD. These findings show how intestinal myeloid cell types could contribute to pathogenesis of CD and possibly other Th17-associated diseases.
Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

Synergy between vitamin D(3) and Toll-like receptor agonists regulates human dendritic cell response during maturation.

In Clinical and Developmental Immunology on 28 May 2013 by Brosbøl-Ravnborg, A., Bundgaard, B., et al.

Human dendritic cells (DC) can be differentiated from blood monocytes in the presence of GM-CSF and IL-4 and matured by lipopolysaccharide (LPS). Vitamin D3 inhibits the maturation of human DC measured by changes in surface expression of HLA-DR, CD14, CD40, CD80, CD83, and CD86. We here examine the function of vitamin D3 during DC maturation. One of the earliest changes to LPS-induced maturation was an increase in CD83 expression. Vitamin D3 inhibited the increase in expression of HLA-DR, CD40, CD80, CD83, and CD86 and the decrease in expression of CD14, which was paralleled morphologically by vitamin D3-induced inhibition of dendritic cell differentiation. Vitamin D3 acted in synergy with the TLR agonists LPS and peptidoglycan (PGN) in inducing IL-6, IL-8, and IL-10, whereas vitamin D3 completely inhibited LPS-induced secretion of IL-12. The synergy occurred at concentrations where neither vitamin D3 nor the TLR agonists alone induced measurable cytokine secretion. Both LPS and PGN enhanced the level of the vitamin D3 receptor (VDR). Taken together, these data demonstrated that vitamin D3 and TLR agonists acted in synergy to alter secretion of cytokines from human DC in a direction that may provide an anti-inflammatory environment.

  • Immunology and Microbiology
View this product on CiteAb