Product Citations: 12

T cell immune dysfunction is a prominent feature of chronic HIV infection. To evaluate non-specific dysfunction, a method involving both generic activation and T cell receptor (TCR) stimulation is necessary. We created a tunable artificial antigen-presenting cell (aAPC) system. This system consists of lipid bilayers on cytometry-compatible silica microbeads (5 μm). When only anti-CD3 is incorporated, T cell activation is limited. Introducing anti-CD28 agonists significantly elevates the cytokine expression and upregulation of activation-induced markers. CD28 co-stimulation modulates the response profile, preferentially promoting IL-2 expression relative to other cytokines. aAPCs-stimulated CD4+ and CD8+ T cells from untreated HIV-infected individuals exhibit altered effector functions and diminished CD28 dependence. These functions are skewed toward TNFα, IFNγ and CD107a, with reduced IL-2. Antiretroviral therapy partially normalizes this distorted profile in CD4+ T cells, but not in CD8+ T cells. Our findings show T cell intrinsic biases that may contribute to persistent systemic T cell dysfunction associated with HIV pathogenesis.
© 2024 The Author(s).

  • Immunology and Microbiology

Flow cytometry as an integrative method for the evaluation of vaccine immunogenicity: A validation approach.

In Biochemistry and Biophysics Reports on 1 July 2023 by Gianchecchi, E., Torelli, A., et al.

The applied bioanalytical assays used for the evaluation of human immune responses from samples collected during clinical trials must be well characterized, fully validated and properly documented to provide reliable results. Even though recommendations for the standardization of flow cytometry instrumentation and assay validation for its clinical application have been published by several organizations, definitive guidelines are not available yet. The aim of the present paper is to provide a validation approach for flow cytometry, examining parameters such as linearity, relative accuracy, repeatability, intermediate precision, range and detection limits and specificity, in order to demonstrate and document its applicability for clinical research purposes and its possible use as one of the methods for the evaluation of vaccine immunogenicity.
© 2023 The Authors.

  • FC/FACS
  • Immunology and Microbiology

Duration of post-COVID-19 symptoms is associated with sustained SARS-CoV-2-specific immune responses.

In JCI Insight on 9 August 2021 by Files, J. K., Sarkar, S., et al.

A subset of COVID-19 patients exhibit post-acute sequelae of COVID-19 (PASC), but little is known about the immune signatures associated with these syndromes. We investigated longitudinal peripheral blood samples in 50 individuals with previously confirmed SARS-CoV-2 infection, including 20 who experienced prolonged duration of COVID-19 symptoms (lasting more than 30 days; median = 74 days) compared with 30 who had symptom resolution within 20 days. Individuals with prolonged symptom duration maintained antigen-specific T cell response magnitudes to SARS-CoV-2 spike protein in CD4+ and circulating T follicular helper cell populations during late convalescence, while those without persistent symptoms demonstrated an expected decline. The prolonged group also displayed increased IgG avidity to SARS-CoV-2 spike protein. Significant correlations between symptom duration and both SARS-CoV-2-specific T cells and antibodies were observed. Activation and exhaustion markers were evaluated in multiple immune cell types, revealing few phenotypic differences between prolonged and recovered groups, suggesting that prolonged symptom duration is not due to persistent systemic inflammation. These findings demonstrate that SARS-CoV-2-specific immune responses are maintained in patients suffering from prolonged post-COVID-19 symptom duration in contrast to those with resolved symptoms and may suggest the persistence of viral antigens as an underlying etiology.

  • COVID-19
  • Immunology and Microbiology

Memory T cells contribute to rapid viral clearance during re-infection, but the longevity and differentiation of SARS-CoV-2-specific memory T cells remain unclear. Here we conduct ex vivo assays to evaluate SARS-CoV-2-specific CD4+ and CD8+ T cell responses in COVID-19 convalescent patients up to 317 days post-symptom onset (DPSO), and find that memory T cell responses are maintained during the study period regardless of the severity of COVID-19. In particular, we observe sustained polyfunctionality and proliferation capacity of SARS-CoV-2-specific T cells. Among SARS-CoV-2-specific CD4+ and CD8+ T cells detected by activation-induced markers, the proportion of stem cell-like memory T (TSCM) cells is increased, peaking at approximately 120 DPSO. Development of TSCM cells is confirmed by SARS-CoV-2-specific MHC-I multimer staining. Considering the self-renewal capacity and multipotency of TSCM cells, our data suggest that SARS-CoV-2-specific T cells are long-lasting after recovery from COVID-19, thus support the feasibility of effective vaccination programs as a measure for COVID-19 control.

  • FC/FACS
  • COVID-19
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Background: Radiofrequency ablation (RFA) is an established treatment option for malignancies located in the liver. RFA-induced irreversible coagulation necrosis leads to the release of danger signals and cellular content. Hence, RFA may constitute an endogenous in situ tumor vaccination, stimulating innate and adaptive immune responses, including tumor-antigen specific T cells. This may explain a phenomenon termed abscopal effect, namely tumor regression in untreated lesions evidenced after distant thermal ablation or irradiation. In this study, we therefore assessed systemic and local immune responses in individual patients treated with RFA. Methods: For this prospective clinical trial, patients with liver metastasis from colorectal carcinoma (mCRC) receiving RFA and undergoing metachronous liver surgery for another lesion were recruited (n = 9) during a 5-year period. Tumor and non-malignant liver tissue samples from six patients were investigated by whole transcriptome sequencing and tandem-mass spectrometry, characterizing naturally presented HLA ligands. Tumor antigen-derived HLA-restricted peptides were selected by different predefined approaches. Further, candidate HLA ligands were manually curated. Peripheral blood mononuclear cells were stimulated in vitro with epitope candidate peptides, and functional T cell responses were assessed by intracellular cytokine staining. Immunohistochemical markers were additionally investigated in surgically resected mCRC from patients treated with (n = 9) or without RFA (n = 7). Results: In all six investigated patients, either induced immune responses and/or pre-existing T cell immunity against the selected targets were observed. Multi-cytokine responses were inter alia directed against known tumor antigens such as cyclin D1 but also against a (predicted) mutation contained in ERBB3. Immunohistochemistry did not show a relevant influx of immune cells into distant malignant lesions after RFA treatment (n = 9) as compared to the surgery only mCRC group (n = 7). Conclusions: Using an individualized approach for target selection, RFA induced and/or boosted T cell responses specific for individual tumor antigens were more frequently detectable as compared to previously published observations with well-characterized tumor antigens. However, the witnessed modest RFA-induced immunological effects alone may not be sufficient for the rejection of established tumors. Therefore, these findings warrant further clinical investigation including the assessment of RFA combination therapies e.g., with immune stimulatory agents, cancer vaccination, and/or immune checkpoint inhibitors.
Copyright © 2019 Löffler, Nussbaum, Jäger, Jurmeister, Budczies, Pereira, Clasen, Kowalewski, Mühlenbruch, Königsrainer, Beckert, Ladurner, Wagner, Bullinger, Gross, Schroeder, Sipos, Königsrainer, Stevanović, Denkert, Rammensee, Gouttefangeas and Haen.

  • Cancer Research
  • Immunology and Microbiology
View this product on CiteAb