Product Citations: 18

Drug resistance is a major obstacle to successful cancer treatment. Therefore, it is essential to understand the molecular mechanisms underlying drug resistance to develop successful therapeutic strategies. α6β4 integrin confers resistance to apoptosis and regulates the survival of cancer cells; however, it remains unclear whether α6β4 integrin is directly involved in chemoresistance. Here, we show that α6β4 integrin promotes doxorubicin resistance by decreasing caspase-3-mediated apoptosis. We found that the overexpression of α6β4 integrin by the β4 integrin gene rendered MDA-MB435S and Panc-1 cells more resistant to doxorubicin than control cells. The acquired resistance to doxorubicin by α6β4 integrin expression was abolished by the deletion of the cytoplasmic signal domain in β4 integrin. Similar results were found in MDA-MB435S and Panc-1 cells when N-glycan-defective β4 integrin mutants were overexpressed or bisecting GlcNAc residues were increased on β4 integrin by the co-expression of N-acetylglucosaminyltransferase III with β4 integrin. The abrogation of α6β4 integrin-mediated resistance to doxorubicin was accompanied by reduced cell viability and an increased caspase-3 activation. Taken together, our results clearly suggest that α6β4 integrin signaling plays a key role in the doxorubicin resistance of cancer cells, and N-glycans on β4 integrin are involved in the regulation of cancer cells.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cancer Research

Growth, Proliferation and Metastasis of Prostate Cancer Cells Is Blocked by Low-Dose Curcumin in Combination with Light Irradiation.

In International Journal of Molecular Sciences on 15 September 2021 by Rutz, J., Benchellal, A., et al.

Although anti-cancer properties of the natural compound curcumin have been reported, low absorption and rapid metabolisation limit clinical use. The present study investigated whether irradiation with visible light may enhance the inhibitory effects of low-dosed curcumin on prostate cancer cell growth, proliferation, and metastasis in vitro. DU145 and PC3 cells were incubated with low-dosed curcumin (0.1-0.4 µg/mL) and subsequently irradiated with 1.65 J/cm2 visible light for 5 min. Controls remained untreated and/or non-irradiated. Cell growth, proliferation, apoptosis, adhesion, and chemotaxis were evaluated, as was cell cycle regulating protein expression (CDK, Cyclins), and integrins of the α- and β-family. Curcumin or light alone did not cause any significant effects on tumor growth, proliferation, or metastasis. However, curcumin combined with light irradiation significantly suppressed tumor growth, adhesion, and migration. Phosphorylation of CDK1 decreased and expression of the counter-receptors cyclin A and B was diminished. Integrin α and β subtypes were also reduced, compared to controls. Irradiation distinctly enhances the anti-tumor potential of curcumin in vitro and may hold promise in treating prostate cancer.

  • Cancer Research

In human glandular endometrial epithelial cells, desmosomal and adherens junction proteins have been shown to extend from a subapically restricted lateral position to the entire lateral membrane during the implantation window of the menstrual cycle. Similarly, a menstrual cycle stage-dependent redistribution of the extracellular matrix adhesion protein α6-integrin has been reported. These changes are believed to be important for endometrial receptiveness and successful embryo implantation. To prove the hypothesis that steroid hormones and human choriogonadotropin can induce the redistribution of these adhesion molecules, we used the human endometrial cell line Ishikawa in a 3D culture system. Gland-like spheroids were grown in reconstituted basement membrane (Matrigel™). The lumen-bearing spheroids were treated for 2 or 4 days with ovarian steroids or human choriogonadotropin and then assessed by immunofluorescence microscopy. In addition, human endometrial biopsies were obtained from patients, who were in therapy for assisted reproductive technology, and were examined in parallel. Lateral redistribution of the desmosomal plaque protein desmoplakin 1 was observed in the spheroids treated either with progesterone, medroxyprogesterone acetate or human choriogonadotropin. Furthermore, the extracellular matrix adhesion protein α6-integrin showed an increased lateral membrane localization upon gestagen stimulation in the 3D culture system. The results of this study demonstrate that the 3D endometrial Ishikawa cell culture might be suited as an experimental model system to prove the effect of hormonal changes like those occurring during the window of implantation.

  • Homo sapiens (Human)
  • Cell Biology
  • Endocrinology and Physiology

A splicing factor switch controls hematopoietic lineage specification of pluripotent stem cells.

In EMBO Reports on 7 January 2021 by Li, Y., Wang, D., et al.

Alternative splicing (AS) leads to transcriptome diversity in eukaryotic cells and is one of the key regulators driving cellular differentiation. Although AS is of crucial importance for normal hematopoiesis and hematopoietic malignancies, its role in early hematopoietic development is still largely unknown. Here, by using high-throughput transcriptomic analyses, we show that pervasive and dynamic AS takes place during hematopoietic development of human pluripotent stem cells (hPSCs). We identify a splicing factor switch that occurs during the differentiation of mesodermal cells to endothelial progenitor cells (EPCs). Perturbation of this switch selectively impairs the emergence of EPCs and hemogenic endothelial progenitor cells (HEPs). Mechanistically, an EPC-induced alternative spliced isoform of NUMB dictates EPC specification by controlling NOTCH signaling. Furthermore, we demonstrate that the splicing factor SRSF2 regulates splicing of the EPC-induced NUMB isoform, and the SRSF2-NUMB-NOTCH splicing axis regulates EPC generation. The identification of this splicing factor switch provides a new molecular mechanism to control cell fate and lineage specification.
© 2020 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  • FC/FACS
  • Stem Cells and Developmental Biology

Quantitative analysis of β1,6GlcNAc-branched N-glycans on β4 integrin in cutaneous squamous cell carcinoma.

In Fukushima Journal of Medical Science on 10 December 2020 by Kariya, Y., Oyama, M., et al.

α6β4 integrin plays pivotal roles in cancer progression in several types of cancers. Our previous study using N-glycan-manipulated cell lines demonstrated that defects in N-glycans or decreased β1,6GlcNAc-branched N-glycans on β4 integrin suppress β4 integrin-mediated cancer cell adhesion, migration, invasion, and tumorigenesis. Furthermore, immunohistochemical analysis has shown that colocalization of β1,6GlcNAc-branched N-glycans with β4 integrin was observed in cutaneous squamous cell carcinoma (SCC) tissue. However, until now there has been no direct evidence that β1,6GlcNAc-branched N-glycans are upregulated on β4 integrin in cutaneous SCC. In the present study, we performed an ELISA analysis of β1,6GlcNAc-branched N-glycans on β4 integrins as well as β4 integrins in cell lysates from human normal skin and cutaneous SCC tissues. The SCC samples showed a 4.9- to 7.4-fold increase in the ratio of β1,6GlcNAc-branched N-glycans to β4 integrin compared with normal skin samples. These findings suggest that the addition of β1,6GlcNAc-branched N-glycans onto β4 integrin was markedly elevated in cutaneous SCC tissue compared to normal skin tissue. The value of β1,6GlcNAc-branched N-glycans on β4 integrin may be useful as a diagnostic marker associated with cutaneous SCC tumor progression.

  • ELISA
  • Homo sapiens (Human)
  • Cancer Research
View this product on CiteAb