Product Citations: 46

This study investigates the characteristics of cardiac mesenchymal stem cell-like cells (CMSCLCs) isolated from the right atrial appendage of human donors with ischemia and a young patient with endocarditis (NE-CMSCLCs). Typical CMSCLCs from ischemic heart patients were derived from coronary artery bypass grafting procedures and compared against bone marrow mesenchymal stromal cells (BM-MSCs). NE-CMSCLCs had a normal immunophenotype, but exhibited enhanced osteogenic differentiation potential, rapid proliferation, reduced senescence, reduced glycolysis, and lower reactive oxygen species generation after oxidative stress compared with typical ischemic CMSCLCs. These differences suggest a unique functional status of NE-CMSCLCs, influenced by the donor health condition. Despite large variances in their paracrine secretome, NE-CMSCLCs retained therapeutic potential, as indicated by their ability to protect hypoxia/reoxygenation-injured human cardiomyocytes, albeit less effectively than typical CMSCLCs. This research describes a unique cell phenotype and underscores the importance of donor health status in the therapeutic efficacy of autologous cardiac cell therapy.

  • Biochemistry and Molecular biology
  • Cardiovascular biology
  • Cell Biology
  • Stem Cells and Developmental Biology

Galectin-1 induces a tumor-associated macrophage phenotype and upregulates indoleamine 2,3-dioxygenase-1.

In IScience on 21 July 2023 by Rudjord-Levann, A. M., Ye, Z., et al.

Galectins are a group of carbohydrate-binding proteins with a presumed immunomodulatory role and an elusive function on antigen-presenting cells. Here we analyzed the expression of galectin-1 and found upregulation of galectin-1 in the extracellular matrix across multiple tumors. Performing an in-depth and dynamic proteomic and phosphoproteomic analysis of human macrophages stimulated with galectin-1, we show that galectin-1 induces a tumor-associated macrophage phenotype with increased expression of key immune checkpoint protein programmed cell death 1 ligand 1 (PD-L1/CD274) and immunomodulator indoleamine 2,3-dioxygenase-1 (IDO1). Galectin-1 induced IDO1 and its active metabolite kynurenine in a dose-dependent manner through JAK/STAT signaling. In a 3D organotypic tissue model system equipped with genetically engineered tumorigenic epithelial cells, we analyzed the cellular source of galectin-1 in the extracellular matrix and found that galectin-1 is derived from epithelial and stromal cells. Our results highlight the potential of targeting galectin-1 in immunotherapeutic treatment of human cancers.
© 2023 The Authors.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Red blood cell derived extracellular vesicles during the process of autologous blood doping.

In Drug Testing and Analysis on 1 November 2022 by Voss, S. C., Yassin, M. A., et al.

The purpose of this pilot study was to investigate the effects of the transfusion of one erythrocyte concentrate on the number of circulating red blood cell extracellular vesicles (RBC-EVs) and their clearance time. Six, healthy volunteers donated their blood and were transfused with their RBC concentrate after 35-36 days of storage. One K2 EDTA and one serum sample were collected before donation, at four timepoints after donation and at another six timepoints after transfusion. RBC-EVs were analyzed on a Cytek Aurora flow cytometer. A highly significant increase (p < 0.001) of RBC-EVs from an average of 60.1 ± 19.8 (103 /μL) at baseline to 179.3 ± 84.7 (103 /μL) in the first 1-3 h after transfusion could be observed. Individual differences in the response to transfusion became apparent with one volunteer showing no increase and another an increased concentration at one timepoint after donation due to an influenza infection. We concluded that in an individualized passport approach, increased RBC-EVs might be considered as additional evidence when interpreting suspicious Athletes Biological Passport (ABPs) but for this additional research related to sample collection and transport processes as well as method development and harmonization would be necessary.
© 2021 The Authors. Drug Testing and Analysis published by John Wiley & Sons Ltd.

  • Cardiovascular biology

Familial lecithin: cholesterol acyltransferase (LCAT) deficiency (FLD) is a severe inherited disease without effective treatment. Patients with FLD develop severe low HDL, corneal opacity, hemolytic anemia, and renal injury.
We developed genetically modified adipocytes (GMAC) secreting LCAT (LCAT-GMAC) for ex vivo gene therapy. GMACs were prepared from the patient's adipocytes to express LCAT by retroviral gene transduction to secrete functional enzymes. This study aimed to evaluate the safety and efficacy of LCAT-GMAC implantation in an FLD patient.
Proliferative preadipocytes were obtained from a patient using a ceiling culture and retrovirally transduced with LCAT. After obtaining enough cells by expansion culture of the transduced cells, the resulting LCAT-GMACs were implanted into a patient with FLD. To evaluate the safety and efficacy, we analyzed the outcome of the autologous implantation for 24 weeks of observation and subsequent 240 weeks of the follow-up periods.
This first-in-human autologous implantation of LCAT-GMACs was shown to be safe by evaluating adverse events. The LCAT-GMAC implantation increased serum LCAT activity by approximately 50% of the baseline and sustained over three years. Consistent with increased LCAT activity, intermediate-density lipoprotein (IDL) and free cholesterol levels of the small and very small HDL fractions decreased. We found the hemoglobin/haptoglobin complex in the hemolyzed pre-implantation sera of the patient. After one week of the implantation, the hemoglobin/haptoglobin complex almost disappeared. Immediately after the implantation, the patient's proteinuria decreased temporarily to mild levels and gradually increased to the baseline. At 48 weeks after implantation, the patient's proteinuria deteriorated with the development of mild hypertension. By the treatment with antihypertensives, the patient's blood pressure normalized. With the normalization of blood pressure, the proteinuria rapidly decreased to mild proteinuria levels.
LCAT-GMAC implantation in a patient with FLD is shown to be safe and appears to be effective, in part, for treating anemia and proteinuria in FLD.
© 2022 The Author(s).

RARG variant predictive of doxorubicin-induced cardiotoxicity identifies a cardioprotective therapy.

In Cell Stem Cell on 2 December 2021 by Magdy, T., Jiang, Z., et al.

Doxorubicin is an anthracycline chemotherapy agent effective in treating a wide range of malignancies, but its use is limited by dose-dependent cardiotoxicity. A recent genome-wide association study identified a SNP (rs2229774) in retinoic acid receptor-γ (RARG) as statistically associated with increased risk of anthracycline-induced cardiotoxicity. Here, we show that human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from patients with rs2229774 and who suffered doxorubicin-induced cardiotoxicity (DIC) are more sensitive to doxorubicin. We determine that the mechanism of this RARG variant effect is mediated via suppression of topoisomerase 2β (TOP2B) expression and activation of the cardioprotective extracellular regulated kinase (ERK) pathway. We use patient-specific hiPSC-CMs as a drug discovery platform, determining that the RARG agonist CD1530 attenuates DIC, and we confirm this cardioprotective effect in an established in vivo mouse model of DIC. This study provides a rationale for clinical prechemotherapy genetic screening for rs2229774 and a foundation for the clinical use of RARG agonist treatment to protect cancer patients from DIC.
Copyright © 2021 Elsevier Inc. All rights reserved.

  • FC/FACS
  • Stem Cells and Developmental Biology
View this product on CiteAb