Product Citations: 326

Insights From Amniotic and Umbilical Cord Mesenchymal Stem Cells in Wound Healing.

In Journal of Cellular and Molecular Medicine on 1 June 2025 by Shen, N. E., Wu, Y., et al.

Skin repair is a complex physiological process that involves the coordinated actions of various cell types. This study examines the distinct roles of amniotic mesenchymal stem cells (A-MSCs) and umbilical cord mesenchymal stem cells (UC-MSCs) in skin healing using a mouse model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed significant differences in gene expression between A-MSCs and UC-MSCs. Specifically, A-MSCs exhibited upregulation of genes associated with extracellular matrix (ECM) organisation and cell migration, thereby enhancing their tissue remodelling capabilities. In contrast, UC-MSCs demonstrate increased expression of genes involved in angiogenesis and anti-inflammatory responses, highlighting their role in creating a favourable healing environment. These findings highlight the unique therapeutic potentials of A-MSCs and UC-MSCs in skin repair strategies. Although MSCs hold promise in regenerative medicine, challenges such as optimal cell selection and modulation of the inflammatory microenvironment remain to be addressed. Our research emphasises the need for continued research related to properties of MSCs to refine therapeutic approaches for effective wound healing.
© 2025 The Author(s). Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.

  • Biochemistry and Molecular biology
  • Stem Cells and Developmental Biology

Human menstrual blood-derived stem cells (MenSCs), a major class of mesenchymal stem cells (MSCs), modulate intercellular signals via paracrine factors. Previous studies found that MenSC-derived secretomes exert protective effects against liver fibrosis. However, the underlying mechanisms of these observations remain unclear.
Extracellular Matrix Protein 1 (ECM1), identified in MenSCs culture medium using mass spectrometry, was employed to stably overexpress ECM1-HA or silence in MenSCs using lentiviral vectors. These genetically engineered cells were either intravenously injected into the carbon tetrachloride (CCl4)-induced liver fibrosis mice or co-cultured with hepatic stellate cells (HSCs)-LX-2. The interaction between ECM1 and low-density lipoprotein receptor-related protein 1α (LRP1α) was confirmed using Co-Immunoprecipitation (Co-ip), Duolink Proximity Ligation Assays (PLA) and pull-down. LRP1 deficient mice were generated via intravenous administration of adeno-associated-virus-8. The downstream molecular mechanisms were characterized by non-target metabolomics and multiplex immunohistochemical staining. RNA sequencing was performed to evaluate the genetic alterations in various genes within the MenSCs.
MenSC-secreted ECM1 exhibits potential to ameliorate liver fibrosis by inactivating HSCs, improving liver functions, and reducing collagen deposition in both cellular and mouse model of the CCl4-induced liver fibrosis. Mechanistically, a novel interaction was identified that ECM1 directly bound to cell surface receptor LRP1α. Notably, the antifibrotic efficacy of MenSC was negated in LRP1-deficient cells and mice. Moreover, the ECM1-LRP1 axis contributed to the alleviation of liver fibrosis by suppressing AKT/mTOR while activating the FoxO1 signaling pathway, thereby facilitating pyrimidine and purine metabolism. Additionally, ECM1-modified MenSCs regulate the transcription of intrinsic cytokine genes, further mitigating liver fibrosis.
These findings highlight an extensive network of ECM1-LRP1 interaction, which serve as a link for providing promising insights into the mechanism of MenSC-based drug development for liver fibrosis. Our study also potentially presents novel avenues for clinical antifibrotic therapy.
© 2025. The Author(s).

  • Cardiovascular biology
  • Stem Cells and Developmental Biology

The isolation of extracellular vesicles (EVs) using currently available methods frequently compromises purity and yield to prioritize speed. Here, we present a next-generation aqueous two-phase system (next-gen ATPS) for the isolation of EVs regardless of scale and volume that is superior to conventional methods such as ultracentrifugation (UC) and commercial kits. This is made possible by the two aqueous phases, one rich in polyethylene glycol (PEG) and the other rich in dextran (DEX), whereby fully encapsulated lipid vesicles preferentially migrate to the DEX-rich phase to achieve a local energy minimum for the EVs. Isolated EVs as found in the DEX-rich phase are more amenable to biomarker analysis such as nanoscale flow cytometry (nFC) when using various pre-conjugated antibodies specific for CD9, CD63 and CD81. TRIzol RNA isolation is further enabled by the addition of dextranase, a critical component of this next-gen ATPS method. RNA yield of next-gen ATPS-isolated EVs is superior to UC and other commercial kits. This negates the use of specialized EV RNA extraction kits. The use of dextranase also enables more accurate immunoreactivity of pre-conjugated antibodies for the detection of EVs by nFC. Transcriptomic analysis of EVs isolated using the next-gen ATPS revealed a strong overlap in microRNA (miRNA), circular RNA (circRNA) and small nucleolar RNA (snoRNA) profiles with EV donor cells, as well as EVs isolated by UC and the exoRNeasy kit, while detecting a superior number of circRNAs compared to the kit in human samples. Overall, this next-gen ATPS method stands out as a rapid and highly effective approach to isolate high-quality EVs in high yield, ensuring optimal extraction and analysis of EV-encapsulated nucleic acids.
© 2025 The Author(s). Journal of Extracellular Vesicles published by Wiley Periodicals LLC on behalf of International Society for Extracellular Vesicles.

  • FC/FACS

HBV-associated hepatocellular carcinomas inhibit antitumor CD8+ T cell via the long noncoding RNA HDAC2-AS2.

In Nature Communications on 28 February 2025 by Gao, Y., Zhang, Z., et al.

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Extracellular vesicles (EV) are critical mediators of intercellular communication within the tumor microenvironment, and cancer-cell-secreted EVs often facilitate cancer progression. Here we show that in HBV-associated HCC, tumor-cell-derived EVs contain a TGFβ-inducible long noncoding RNA, termed HDAC2-AS2. EVs enriched with HDAC2-AS2 facilitate cancer progression by suppressing cytotoxicity of intra-tumor CD8+ T cells. Mechanistically, in activated cytotoxic CD8+ T cells, translocation of the transcription factor cyclin-dependent kinase 9 (CDK9), to the cytoplasm is critical for functional integrity. HDAC2-AS2 targets and blocks cytosolic CDK9, and this results in exhaustion of PD-1+CD8+ T cells and suppression of IFN-γ+CD8+ T cell cytotoxicity. Notably, we demonstrate that low CDK9 and high HDAC2-AS2 expressions are associated with poor survival of HCC, which can be rescued by anti-PD-1 therapy. These findings emphasize the significance of tumor-derived EVs in suppressing antitumor CD8+ T cell immunity to promote tumorigenesis, and highlight extracellular HDAC2-AS2 as a promising biomarker and therapeutic target for HCC.
© 2025. The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Genetics
  • Immunology and Microbiology

A multi-kinase inhibitor screen identifies inhibitors preserving stem-cell-like chimeric antigen receptor T cells.

In Nature Immunology on 1 February 2025 by Song, F., Tsahouridis, O., et al.

Chimeric antigen receptor T cells (CAR T cells) with T stem (TSCM) cell-like phenotypic characteristics promote sustained antitumor effects. We performed an unbiased and automated high-throughput screen of a kinase-focused compound set to identify kinase inhibitors (KIs) that preserve human TSCM cell-like CAR T cells. We identified three KIs, UNC10225387B, UNC10225263A and UNC10112761A, that combined in vitro increased the frequency of CD45RA+CCR7+TCF1hi TSCM cell-like CAR T cells from both healthy donors and patients with cancer. KI-treated CAR T cells showed enhanced antitumor effects both in vitro and in vivo in mouse tumor models. The KI cocktail maintains TSCM cell-like phenotype preferentially in CAR T cells originating from naive T cells and causes transcriptomic changes without arresting T cell activation or modulating the chromatin organization. Specific kinases, ITK, ADCK3, MAP3K4 and CDK13, targeted by the KI cocktail in a dose-dependent manner are directly associated with the preservation of TSCM cell-like CAR T cells. Knockdown of these kinases individually or in combination enriches for TSCM cell-like CAR T cells, but only CAR T cells generated in the presence of the KI cocktail show robust expansion and differentiation on stimulation with tumor cells. Overall, transient pharmacological inhibition of strategically targeted kinases maintains stem-like features in CAR T cells and improves their antitumor activity.
© 2025. The Author(s).

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology
View this product on CiteAb