Product Citations: 26

A co-culture system of macrophages with breast cancer tumoroids to study cell interactions and therapeutic responses.

In Cell Rep Methods on 17 June 2024 by Raffo-Romero, A., Ziane-Chaouche, L., et al.

3D tumoroids have revolutionized in vitro/ex vivo cancer biology by recapitulating the complex diversity of tumors. While tumoroids provide new insights into cancer development and treatment response, several limitations remain. As the tumor microenvironment, especially the immune system, strongly influences tumor development, the absence of immune cells in tumoroids may lead to inappropriate conclusions. Macrophages, key players in tumor progression, are particularly challenging to integrate into the tumoroids. In this study, we established three optimized and standardized methods for co-culturing human macrophages with breast cancer tumoroids: a semi-liquid model and two matrix-embedded models tailored for specific applications. We then tracked interactions and macrophage infiltration in these systems using flow cytometry and light sheet microscopy and showed that macrophages influenced not only tumoroid molecular profiles but also chemotherapy response. This underscores the importance of increasing the complexity of 3D models to more accurately reflect in vivo conditions.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

  • Homo sapiens (Human)
  • Cancer Research

Targeting triple-negative breast cancer cells with a β1-integrin binding aptamer.

In Molecular Therapy. Nucleic Acids on 12 September 2023 by Pleiko, K., Haugas, M., et al.

Targeted therapies have increased the treatment options for triple-negative breast cancer patients. However, the paucity of targetable biomarkers and tumor heterogeneity have limited the ability of precision-guided interventions to live up to their full potential. As affinity-targeting ligands, aptamers show high selectivity toward target molecules. Compared with antibodies, aptamers have lower molecular weight, increased stability during transportation, reduced immunogenicity, and increased tissue uptake. Recently, we reported discovery of the GreenB1 aptamer, which is internalized in cultured triple-negative MDA-MB-231 human breast cancer cells. We show that the GreenB1 aptamer specifically targets β1-integrin, a protein linked previously to breast cancer cell invasiveness and migration. Aptamer binds to β1-integrin with low nanomolar affinity. Our findings suggest potential applications for GreenB1-guided precision agents for diagnosis and therapy of cancers overexpressing β1-integrin.
© 2023 The Author(s).

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

Effects of storage on quality and function of acid-treated platelets with reduced HLA Class I surface expression.

In Transfusion Medicine (Oxford, England) on 1 August 2023 by Mirlashari, M. R., Vetlesen, A., et al.

Refractory patients need to be provided with HLA-matched platelets (PLTs), which require time-consuming cross-matching. Treatment of PLTs with citric acid leads to denaturation of the HLA Class I complexes without significant damage to the PLTs. HLA Class I depleted PLTs could alternatively be used to HLA-matched PLTs for transfusion. These PLTs have verified normal function up to 4-6 h after acid treatment.
Buffy coat (BC) PLT concentrates were depleted of HLA Class I complexes by incubation in citric acid. The days after acid-treatment, surface expression of HLA Class I complexes, CD62P and CD63 were determined by flow cytometry, in addition to viability and mitochondrial membrane potential (MMP). Thromboelastography (TEG) tested PLT functionality.
Expression of HLA Class I complexes was reduced by 70%-75% in acid-treated PLTs compared to untreated PLTs from day 1 through day 7. Controls and acid-treated PLTs showed insignificant loss of MMP stored for 4 days. Analysis of the residual PLT activation and viability showed no significant differences for 4 days of storage. However, the residual PLT activation potential and viability were significantly decreased in acid-treated PLTs and control PLTs after 7 days of storage. Acid treatment caused a significant decrease in the TEG variable, reaction time (R time), for acid-treated PLTs as compared to control PLTs from days 1 through day 3.
Our data suggest that extended storage of acid-treated PLTs is possible and will improve flexibility when planning for transfusion of patients with alloimmune PLT refractoriness caused by anti-HLA-antibodies.
© 2023 The Authors. Transfusion Medicine published by John Wiley & Sons Ltd on behalf of British Blood Transfusion Society.

B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.

  • FC/FACS
  • Cancer Research
  • Immunology and Microbiology

Distinct Cellular Immune Responses to SARS-CoV-2 in Pregnant Women.

In The Journal of Immunology on 15 April 2022 by Gomez-Lopez, N., Romero, R., et al.

Pregnant women are at increased risk of adverse outcomes, including preeclampsia and preterm birth, that may result from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Pregnancy imprints specific maternal immune responses that can modulate host susceptibility to microbial infection; therefore, recent studies have focused on the humoral response against SARS-CoV-2 in pregnant women. However, the pregnancy-specific cellular immune responses triggered by SARS-CoV-2 infection are poorly understood. In this study, we undertook an extensive in vitro investigation to determine the cellular immune responses to SARS-CoV-2 particles and proteins/peptides in pregnant women. First, we show that SARS-CoV-2 particles do not alter the pregnancy-specific oxidative burst of neutrophils and monocytes. Yet, SARS-CoV-2 particles/proteins shift monocyte activation from the classical to intermediate states in pregnant, but not in nonpregnant, women. Furthermore, SARS-CoV-2 proteins, but not particles or peptide pools, mildly enhance T cell activation during pregnancy. As expected, B cell phenotypes are heavily modulated by SARS-CoV-2 particles in all women; yet, pregnancy itself further modified such responses in these adaptive immune cells. Lastly, we report that pregnancy itself governs cytokine responses in the maternal circulation, of which IFN-β and IL-8 were diminished upon SARS-CoV-2 challenge. Collectively, these findings highlight the differential in vitro responses to SARS-CoV-2 in pregnant and nonpregnant women and shed light on the immune mechanisms implicated in coronavirus disease 2019 during pregnancy.
Copyright © 2022 by The American Association of Immunologists, Inc.

  • FC/FACS
  • Homo sapiens (Human)
  • COVID-19
  • Endocrinology and Physiology
  • Immunology and Microbiology
View this product on CiteAb