Product Citations: 6

Assaying Candidate Human Skin Keratinocyte Stem Cells by Determining Their Long-Term Serial Proliferative Output in Culture.

In Methods in Molecular Biology (Clifton, N.J.) on 5 May 2022 by Pieterse, Z. & Kaur, P.

Stem cells are found in niches around the body, including the epidermis of the skin, and can be distinguished from their more committed progeny by their high long-term proliferative capacity in vitro. Here we describe a technique used to isolate three main epidermal cell fractions from human neonatal foreskin termed early differentiating (ED), transient amplifying (TA) and keratinocyte stem cells (KSC) based on their differential expression of two cell surface markers: CD49f and CD71. These three fractions were cultivated in parallel in a serial proliferation assay to determine their long-term proliferative output. This assay demonstrates that the KSC fraction had the highest proliferative output (total cell yield) over a long experimental timeframe of 2-3 months, as well as a higher proliferative rate compared to the other two fractions (P > 0.05). This assay can be utilized under similar conditions to determine the proliferative capacity of other putative stem cells using novel stem cell markers for epidermal or other stem cell populations.
© 2022. Springer Science+Business Media, LLC, part of Springer Nature.

  • Biochemistry and Molecular biology
  • Stem Cells and Developmental Biology

Monocytes and macrophages that originate from common myeloid progenitors perform various crucial roles in the innate immune system. Stimulation with LPS combined with TLR4 drives the production of pro-inflammatory cytokines through MAPKs and NF-κB pathway in different cells. However, the difference in LPS susceptibility between monocytes and macrophages is poorly understood. In this study, we found that pro-inflammatory cytokines-IL-1β, IL-6 and TNFα showed greater induction in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells than in THP-1 cells. To determine the difference in cytokine expression, the surface proteins such as TLR4-related proteins and intracellular adaptor proteins were more preserved in PMA-differentiated THP-1 cells than in THP-1 cells. MyD88 is a key molecule responsible for the difference in LPS susceptibility. Moreover, MAPKs and NF-κB pathway-related molecules showed higher levels of phosphorylation in PMA-differentiated THP-1 cells than in THP-1 cells. Upon MyD88 depletion, there was no difference in the phosphorylation of MAPK pathway-related molecules. Therefore, these results demonstrate that the difference in LPS susceptibility between THP-1 cells and PMA-differentiated THP-1 cells occur as a result of gap between the activated MAPKs and NF-κB pathways via changes in the expression of LPS-related receptors and MyD88.

  • FC/FACS
  • Immunology and Microbiology

Distinct Bone Marrow Sources of Pleiotrophin Control Hematopoietic Stem Cell Maintenance and Regeneration.

In Cell Stem Cell on 6 September 2018 by Himburg, H. A., Termini, C. M., et al.

Bone marrow (BM) perivascular stromal cells and vascular endothelial cells (ECs) are essential for hematopoietic stem cell (HSC) maintenance, but the roles of distinct niche compartments during HSC regeneration are less understood. Here we show that Leptin receptor-expressing (LepR+) BM stromal cells and ECs dichotomously regulate HSC maintenance and regeneration via secretion of pleiotrophin (PTN). BM stromal cells are the key source of PTN during steady-state hematopoiesis because its deletion from stromal cells, but not hematopoietic cells, osteoblasts, or ECs, depletes the HSC pool. Following myelosuppressive irradiation, PTN expression is increased in bone marrow endothelial cells (BMECs), and PTN+ ECs are more frequent in the niche. Moreover, deleting Ptn from ECs impairs HSC regeneration whereas Ptn deletion from BM stromal cells does not. These findings reveal dichotomous and complementary regulation of HSC maintenance and regeneration by BM stromal cells and ECs.
Copyright © 2018 Elsevier Inc. All rights reserved.

  • Stem Cells and Developmental Biology

Cisplatin induces differentiation of breast cancer cells.

In Frontiers in Oncology on 14 June 2013 by Prabhakaran, P., Hassiotou, F., et al.

Breast tumors are heterogeneous including cells with stem cell properties and more differentiated cells. This heterogeneity is reflected into the molecular breast cancer subtypes. Breast cancer stem cells are resistant to chemotherapy, thus recent efforts are focusing on identifying treatments that shift them toward a more differentiated phenotype, making them more susceptible to chemotherapy. We examined whether the drug cisplatin induces differentiation in breast cancer cell lines that represent different breast cancer subtypes. We used three cell lines representing triple-negative breast cancers, BT-549 and MDA-MB-231 (claudin-low), and MDA-MB-468 (basal-like), along with estrogen and progesterone receptor positive MCF-7 cells (luminal). Cisplatin was applied at 2.5, 5, 10, and 20 μM, and cell viability and proliferation were measured using MTS and BrdU assays, respectively. The effect of cisplatin on the cellular hierarchy was examined by flow cytometry, immunofluorescence and qRT-PCR. Cisplatin treatment of 10 and 20 μM reduced cell viability by 36-51% and proliferation capacity by 36-67%. Treatment with cisplatin resulted in 12-67% down-regulation of stem cell markers (CD49f, SSEA4) and 10-130% up-regulation of differentiation markers (CK18, SMA, β-tubulin). At the mRNA level, CD49f was down-regulated whilst β-tubulin was up-regulated in the claudin-low cell lines. SSEA4 protein expression decreased upon cisplatin treatment, but SSEA4 mRNA expression increased indicating a differential regulation of cisplatin at the post-transcriptional level. It is concluded that cisplatin reduces breast cancer cell survival and induces differentiation of stem/progenitor cell subpopulations within breast cancer cell lines. These effects indicate the potential of this drug to target specific chemotherapy-resistant cells within a tumor.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research

The epithelial cell rests of Malassez (ERM) are odontogenic epithelial cells located within the periodontal ligament matrix. While their function is unknown, they may support tissue homeostasis and maintain periodontal ligament space or even contribute to periodontal regeneration. We investigated the notion that ERM contain a subpopulation of stem cells that could undergo epithelial-mesenchymal transition and differentiate into mesenchymal stem-like cells with multilineage potential. For this purpose, ERM collected from ovine incisors were subjected to different inductive conditions in vitro, previously developed for the characterization of bone marrow mesenchymal stromal/stem cells (BMSC). We found that ex vivo-expanded ERM expressed both epithelial (cytokeratin-8, E-cadherin, and epithelial membrane protein-1) and BMSC markers (CD44, CD29, and heat shock protein-90β). Integrin α6/CD49f could be used for the enrichment of clonogenic cell clusters [colony-forming units-epithelial cells (CFU-Epi)]. Integrin α6/CD49f-positive-selected epithelial cells demonstrated over 50- and 7-fold greater CFU-Epi than integrin α(6)/CD49f-negative cells and unfractionated cells, respectively. Importantly, ERM demonstrated stem cell-like properties in their differentiation capacity to form bone, fat, cartilage, and neural cells in vitro. When transplanted into immunocompromised mice, ERM generated bone, cementum-like and Sharpey's fiber-like structures. Additionally, gene expression studies showed that osteogenic induction of ERM triggered an epithelial-mesenchymal transition. In conclusion, ERM are unusual cells that display the morphological and phenotypic characteristics of ectoderm-derived epithelial cells; however, they also have the capacity to differentiate into a mesenchymal phenotype and thus represent a unique stem cell population within the periodontal ligament.

  • Stem Cells and Developmental Biology
View this product on CiteAb