Product Citations: 6

MHC class I and II peptide homology regulates the cellular immune response.

In The FASEB Journal on 1 June 2020 by Halpert, M. M., Konduri, V., et al.

Mammalian immune responses are initiated by "danger" signals--immutable molecular structures known as PAMPs. When detected by fixed, germline encoded receptors, pathogen-associated molecular pattern (PAMPs) subsequently inform the polarization of downstream adaptive responses depending upon identity and localization of the PAMP. Here, we report the existence of a completely novel "PAMP" that is not a molecular structure but an antigenic pattern. This pattern--the incidence of peptide epitopes with stretches of 100% sequence identity bound to both dendritic cell (DC) major histocompatibility (MHC) class I and MHC class II--strongly induces TH 1 immune polarization and activation of the cellular immune response. Inherent in the existence of this PAMP is the concomitant existence of a molecular sensor complex with the ability to scan and compare amino acid sequence identities of bound class I and II peptides. We provide substantial evidence implicating the multienzyme aminoacyl-tRNA synthetase (mARS) complex and its AIMp1 structural component as the key constituents of this complex. The results demonstrate a wholly novel mechanism by which T-helper (TH ) polarization is governed and provide critical information for the design of vaccination strategies intended to provoke cell-mediated immunity.
© 2020 Federation of American Societies for Experimental Biology.

  • Immunology and Microbiology

Analysis of miR-146a and miR-142-3p as Potential Markers of Freshly Isolated or In Vitro-Expanded Human Treg cells.

In Scandinavian Journal of Immunology on 1 February 2017 by Holmstrøm, K., Pedersen, A. E., et al.

Regulatory CD4+ T cells (Tregs) are pivotal for prevention of autoimmunity. The use of Tregs is therefore of increasing interest in in vitro drug screening assays as well as for a cytotherapy per se against autoimmune disorders. For both purposes, in vitro expansion of peripheral blood Tregs is necessary and there is an increasing need to identify novel markers that can discriminate natural thymic-derived Tregs (tTregs) from other T cell subsets, and ideally, such markers should be stably expressed during in vitro expansion procedures. We screened for novel miRNAs differentially expressed in tTregs and identified miR-146a and 142-3p as possible candidates. We analysed freshly isolated naïve and activated tTregs and non-Treg subsets after or prior to in vitro expansion. We observed a tTreg-specific profile of these miRNAs together with FOXP3 and Helios in freshly isolated tTregs, but observed a decline in the same markers in activated tTregs as opposed to naïve tTregs. In vitro-expanded Tregs could be identified based on FOXP3 expression, but with loss of a discriminate profile for miRNA candidates and a decline in FOXP3 when activated tTregs were expanded. Our data demonstrate miR-146a and 142-3p as potential miRNA markers for discrimination between non-Treg cells and tTregs, but these miRNAs are not stable markers for in vitro-expanded Treg cells. In addition, the loss of FOXP3 in expansion of activated tTregs has implication for in vitro use of this cell subset in immunopharmacological assays and cytotherapy as FOXP3 is pivotal for suppressive function.
© 2016 The Foundation for the Scandinavian Journal of Immunology.

  • Immunology and Microbiology

The remarkable functional plasticity of professional antigen-presenting cells (APCs) allows the adaptive immune system to respond specifically to an incredibly diverse array of potential pathogenic insults; nonetheless, the specific molecular effectors and mechanisms that underpin this plasticity remain poorly characterized. Cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), the target of the blockbuster cancer immunotherapeutic ipilimumab, is one of the most well-known and well-studied members of the B7 superfamily and negatively regulates T cell responses by a variety of known mechanisms. Although CTLA-4 is thought to be expressed almost exclusively among lymphoid lineage hematopoietic cells, a few reports have indicated that nonlymphoid APCs can also express the CTLA-4 mRNA transcript and that transcript levels can be regulated by external stimuli. In this study, we substantially build upon these critical observations, definitively demonstrating that mature myeloid lineage dendritic cells (DC) express significant levels of intracellular CTLA-4 that they constitutively secrete in microvesicular structures. CTLA-4(+) microvesicles can competitively bind B7 costimulatory molecules on bystander DC, resulting in downregulation of B7 surface expression with significant functional consequences for downstream CD8(+) T-cell responses. Hence, the data indicate a previously unknown role for DC-derived CTLA-4 in immune cell functional plasticity and have significant implication for the design and implementation of immunomodulatory strategies intended to treat cancer and infectious disease.

  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

Memory T cells (Tmem), particularly those resistant to costimulation blockade (CB), are a major barrier to transplant tolerance. The transcription factor Eomesodermin (Eomes) is critical for Tmem development and maintenance, but its expression by alloactivated T cells has not been examined in nonhuman primates.
We evaluated Eomes and coinhibitory cytotoxic T lymphocyte antigen-4 (CTLA4) expression by alloactivated rhesus monkey T cells in the presence of CTLA4 immunoglobulin, both in vitro and in renal allograft recipients treated with CTLA4Ig, with or without regulatory dendritic cell (DCreg) infusion.
In normal monkeys, CD8+ T cells expressed significantly more Eomes than CD4+ T cells. By contrast, CD8+ T cells displayed minimal CTLA4. Among T cell subsets, central Tmem (Tcm) expressed the highest levels of Eomes. Notably, Eomes(lo)CTLA4(hi) cells displayed higher levels of CD25 and Foxp3 than Eomes(hi)CTLA4(lo) CD8+ T cells. After allostimulation, distinct proliferating Eomes(lo)CTLA4(hi) and Eomes(hi)CTLA4(lo) CD8+ T cell populations were identified, with a high proportion of Tcm being Eomes(lo)CTLA4(hi). CB with CTLA4Ig during allostimulation of CD8+ T cells reduced CTLA4 but not Eomes expression, significantly reducing Eomes(lo)CTLA4(hi) cells. After transplantation with CB and rapamycin, donor-reactive Eomes(lo)CTLA4(hi) CD8+ T cells were reduced. However, in monkeys also given DCreg, absolute numbers of these cells were elevated significantly.
Low Eomes and high CTLA4 expression by donor-reactive CD8+ Tmem is associated with prolonged renal allograft survival induced by DCreg infusion in CTLA4Ig-treated monkeys. Prolonged allograft survival associated with DCreg infusion may be related to maintenance of donor-reactive Eomes(lo)CTLA4(hi) Tcm.

  • Immunology and Microbiology

Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2.

In Nature Genetics on 1 September 2015 by Ungewickell, A., Bhaduri, A., et al.

Mycosis fungoides and Sézary syndrome comprise the majority of cutaneous T cell lymphomas (CTCLs), disorders notable for their clinical heterogeneity that can present in skin or peripheral blood. Effective treatment options for CTCL are limited, and the genetic basis of these T cell lymphomas remains incompletely characterized. Here we report recurrent point mutations and genomic gains of TNFRSF1B, encoding the tumor necrosis factor receptor TNFR2, in 18% of patients with mycosis fungoides and Sézary syndrome. Expression of the recurrent TNFR2 Thr377Ile mutant in T cells leads to enhanced non-canonical NF-κB signaling that is sensitive to the proteasome inhibitor bortezomib. Using an integrative genomic approach, we additionally discovered a recurrent CTLA4-CD28 fusion, as well as mutations in downstream signaling mediators of these receptors.

  • FC/FACS
  • Genetics
View this product on CiteAb