Product Citations: 18

1 image found

Current studies on the immune microenvironment of colorectal cancer (CRC) were mostly limited to the tissue level, lacking relevant studies in the peripheral blood, and failed to describe its alterations in the whole process of adenocarcinoma formation, especially of adenoma carcinogenesis. Here, we constructed a large-scale population cohort and used the CyTOF to explore the changes of various immune cell subsets in peripheral blood of CRC. We found monocytes and basophils cells were significantly higher in adenocarcinoma patients. Compared with early-stage CRC, effector CD4+T cells and naive B cells were higher in patients with lymph node metastasis, whereas the basophils were lower. We also performed random forest algorithm and found monocytes play the key role in carcinogenesis. Our study draws a peripheral blood immune cell landscape of the occurrence and development of CRC at the single-cell level and provides a reference for other researchers.
© 2024 The Authors.

  • Homo sapiens (Human)
  • Cancer Research
  • Immunology and Microbiology

Mtb HLA-E-tetramer-sorted CD8+ T cells have a diverse TCR repertoire.

In IScience on 15 March 2024 by Voogd, L., Drittij, A. M. H. F., et al.

HLA-E molecules can present self- and pathogen-derived peptides to both natural killer (NK) cells and T cells. T cells that recognize HLA-E peptides via their T cell receptor (TCR) are termed donor-unrestricted T cells due to restricted allelic variation of HLA-E. The composition and repertoire of HLA-E TCRs is not known so far. We performed TCR sequencing on CD8+ T cells from 21 individuals recognizing HLA-E tetramers (TMs) folded with two Mtb-HLA-E-restricted peptides. We sorted HLA-E Mtb TM+ and TM- CD8+ T cells directly ex vivo and performed bulk RNA-sequencing and single-cell TCR sequencing. The identified TCR repertoire was diverse and showed no conservation between and within individuals. TCRs selected from our single-cell TCR sequencing data could be activated upon HLA-E/peptide stimulation, although not robust, reflecting potentially weak interactions between HLA-E peptide complexes and TCRs. Thus, HLA-E-Mtb-specific T cells have a highly diverse TCR repertoire.
© 2024 The Author(s).

  • Immunology and Microbiology

Circulating ILC precursors expressing CD62L exhibit a type 2 signature distinctly decreased in psoriatic patients.

In European Journal of Immunology on 1 July 2021 by Campana, S., De Pasquale, C., et al.

Human CD117+ CRTH2neg innate lymphoid cells (ILC) comprise multipotent precursors (ILCp), which are able to differentiate into subtypes in response to different signals received in peripheral tissues. NKp46+ ILCp have been reported to associate with ILC3 whereas KLRG1+ ILCp with ILC2, although the latter can also generate other ILC subsets, thus, maintaining a substantial plasticity. We here showed that CD62L is expressed by ILCp exclusively within KLRG1+ population and its expression marks a loss of their broad differentiation potential. Analysis of cytokine production and relevant markers demonstrated that CD62L+ ILCp mainly differentiate into ILC2 whereas CD62Lneg counterpart can also differentiate into other ILC subsets depending on the signals they receive. Remarkably, in peripheral blood of psoriatic patients, where ILC3 are usually enriched, CD62L+ ILC were drastically reduced, whereas CD62Lneg ILC2 upregulated both RORγt and NKp46, thus, suggesting an ongoing conversion to ILC3. Therefore, CD62L now emerges as a potential marker to identify a skewing toward type 2 among ILCp.
© 2021 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.

  • Immunology and Microbiology

Natural killer (NK) cells are critical innate effector cells whose development is dependent on the Janus kinase-signal transducer and activator of transcription (STAT) pathway. NK cell deficiency can result in severe or refractory viral infections. Patients with STAT1 gain-of-function (GOF) mutations have increased viral susceptibility.
We sought to investigate NK cell function in patients with STAT1 GOF mutations.
NK cell phenotype and function were determined in 16 patients with STAT1 GOF mutations. NK cell lines expressing patients' mutations were generated with clustered regularly interspaced short palindromic repeats (CRISPR-Cas9)-mediated gene editing. NK cells from patients with STAT1 GOF mutations were treated in vitro with ruxolitinib.
Peripheral blood NK cells from patients with STAT1 GOF mutations had impaired terminal maturation. Specifically, patients with STAT1 GOF mutations have immature CD56dim NK cells with decreased expression of CD16, perforin, CD57, and impaired cytolytic function. STAT1 phosphorylation was increased, but STAT5 was aberrantly phosphorylated in response to IL-2 stimulation. Upstream inhibition of STAT1 signaling with the small-molecule Janus kinase 1/2 inhibitor ruxolitinib in vitro and in vivo restored perforin expression in CD56dim NK cells and partially restored NK cell cytotoxic function.
Properly regulated STAT1 signaling is critical for NK cell maturation and function. Modulation of increased STAT1 phosphorylation with ruxolitinib is an important option for therapeutic intervention in patients with STAT1 GOF mutations.
Copyright © 2017 American Academy of Allergy, Asthma & Immunology. All rights reserved.

  • Biochemistry and Molecular biology
  • Immunology and Microbiology

TRPC3 Overexpression Promotes the Progression of Inflammation-Induced Preterm Labor and Inhibits T Cell Activation.

In Cellular Physiology and Biochemistry on 7 February 2018 by Jing, C., Dongming, Z., et al.

To detect the expression of the TRPC3 channel protein in the tissues of women experiencing preterm labor and investigate its interaction with T lymphocytes, providing a theoretical basis for the clinical prevention of threatened preterm labor and the development of drug-targeted therapy.
Forty-seven women experiencing preterm labor and 47 women experiencing normal full-term labor were included in this study. All included women underwent delivery via cesarean section; uterine samples were obtained at delivery. The expression of TRPC3 in uterine tissue was detected by immunohistochemistry, real-time quantitative reverse transcription-PCR, and western blot assay. Activation of T lymphocytes in peripheral blood and uterine tissue were detected by flow cytometry. A TRPC3-/- mouse model of inflammation-induced preterm labor was established; expression of TRPC3, Cav3.1, and Cav3.2 were analyzed in mouse uterine tissue. Activation of T lymphocytes in female mouse and human peripheral blood samples was determined using flow cytometry.
In women experiencing preterm labor, expression of TRPC3 and the Cav3.1 and Cav3.2 proteins was significantly increased; in addition, the percentage of CD3+, CD4+, and CD8+ T cells in peripheral blood was significantly decreased. TRPC3 knockout significantly delayed the occurrence of preterm labor in mice. The muscle tension of ex vivo uterine strips was lower, Cav3.1 and Cav3.2 protein expression was lower, and the percentage of CD8+ T lymphocytes was significantly increased in wild-type mice subjected to an inflammation-induced preterm labor than in wild-type mice experiencing normal full-term labor.
TRPC3 is closely related to the initiation of labor. TRPC3 relies on Cav3.1 and Cav3.2 proteins to inhibit inflammation-induced preterm labor by inhibiting the activation of T cells, in particular CD8+ T lymphocytes.
© 2018 The Author(s). Published by S. Karger AG, Basel.

  • FC/FACS
  • Immunology and Microbiology
View this product on CiteAb