Product Citations: 8

Natural killer (NK) cells are primary defenders against cancer precursors, but cancer cells can persist by evading immune surveillance. To investigate the genetic mechanisms underlying this evasion, we perform a genome-wide CRISPR screen using B lymphoblastoid cells. SPPL3, a peptidase that cleaves glycosyltransferases in the Golgi, emerges as a top hit facilitating evasion from NK cytotoxicity. SPPL3-deleted cells accumulate glycosyltransferases and complex N-glycans, disrupting not only binding of ligands to NK receptors but also binding of rituximab, a CD20 antibody approved for treating B cell cancers. Notably, inhibiting N-glycan maturation restores receptor binding and sensitivity to NK cells. A secondary CRISPR screen in SPPL3-deficient cells identifies B3GNT2, a transferase-mediating poly-LacNAc extension, as crucial for resistance. Mass spectrometry confirms enrichment of N-glycans bearing poly-LacNAc upon SPPL3 loss. Collectively, our study shows the essential role of SPPL3 and poly-LacNAc in cancer immune evasion, suggesting a promising target for cancer treatment.
Published by Elsevier Inc.

A dynamic CD2-rich compartment at the outer edge of the immunological synapse boosts and integrates signals.

In Nature Immunology on 1 October 2020 by Demetriou, P., Abu-Shah, E., et al.

The CD2-CD58 recognition system promotes adhesion and signaling and counters exhaustion in human T cells. We found that CD2 localized to the outer edge of the mature immunological synapse, with cellular or artificial APC, in a pattern we refer to as a 'CD2 corolla'. The corolla captured engaged CD28, ICOS, CD226 and SLAM-F1 co-stimulators. The corolla amplified active phosphorylated Src-family kinases (pSFK), LAT and PLC-γ over T cell receptor (TCR) alone. CD2-CD58 interactions in the corolla boosted signaling by 77% as compared with central CD2-CD58 interactions. Engaged PD-1 invaded the CD2 corolla and buffered CD2-mediated amplification of TCR signaling. CD2 numbers and motifs in its cytoplasmic tail controlled corolla formation. CD8+ tumor-infiltrating lymphocytes displayed low expression of CD2 in the majority of people with colorectal, endometrial or ovarian cancer. CD2 downregulation may attenuate antitumor T cell responses, with implications for checkpoint immunotherapies.

  • Immunology and Microbiology
  • Neuroscience

For an effective T-cell activation and response, co-stimulation is required in addition to the antigen-specific signal from their antigen receptors. The CD2/CD58 interaction is considered as one of the most important T-cell co-stimulatory pathways for T-cell activation and proliferation, and its role in regulating intestinal T-cell function in acute and chronic SIV -infected macaques is poorly documented. Here, we demonstrated a significant reduction of CD58 expression in both T- and B-cell populations during acute SIV infection along with high plasma viral load and a loss of intestinal CD4+ T cells compared to SIV-uninfected control macaques. The reduction of CD58 expression in T cells was correlated with the reduced expression of T-cell-mediated IL-2 and TNFα production. Together, these results indicate that reduction in the CD2/CD58 interaction pathway in mucosal lymphocytes might play a crucial role in mucosal T-cell dysfunction during acute SIV/HIV infection.

  • Immunology and Microbiology

A Subset of Human Autoreactive CD1c-Restricted T Cells Preferentially Expresses TRBV4-1+ TCRs.

In The Journal of Immunology on 15 January 2018 by Guo, T., Koo, M. Y., et al.

In humans, a substantial portion of T cells recognize lipids presented by the monomorphic CD1 proteins. Recent studies have revealed the molecular basis of mycobacterial lipid recognition by CD1c-restricted T cells. Subsets of CD1c-restricted T cells recognize self-lipids in addition to foreign lipids, which may have implications in human diseases involving autoimmunity and malignancy. However, the molecular identity of these self-reactive T cells remains largely elusive. In this study, using a novel CD1c+ artificial APC (aAPC)-based system, we isolated human CD1c-restricted autoreactive T cells and characterized them at the molecular level. By using the human cell line K562, which is deficient in MHC class I/II and CD1 expression, we generated an aAPC expressing CD1c as the sole Ag-presenting molecule. When stimulated with this CD1c+ aAPC presenting endogenous lipids, a subpopulation of primary CD4+ T cells from multiple donors was consistently activated, as measured by CD154 upregulation and cytokine production in a CD1c-specific manner. These activated CD4+ T cells preferentially expressed TRBV4-1+ TCRs. Clonotypic analyses of the reconstituted TRBV4-1+ TCR genes confirmed CD1c-restricted autoreactivity of this repertoire, and the strength of CD1c reactivity was influenced by the diversity of CDR3β sequences. Finally, alanine scanning of CDR1 and CDR2 sequences of TRBV4-1 revealed two unique residues, Arg30 and Tyr51, as critical in conferring CD1c-restricted autoreactivity, thus elucidating the molecular basis of the observed V gene bias. These data provide new insights into the molecular identity of human autoreactive CD1c-restricted T cells.
Copyright © 2018 by The American Association of Immunologists, Inc.

  • Immunology and Microbiology

Recruitment of activation receptors at inhibitory NK cell immune synapses.

In PLoS ONE on 27 September 2008 by Schleinitz, N., March, M. E., et al.

Natural killer (NK) cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR) family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  • Immunology and Microbiology
  • Neuroscience
View this product on CiteAb