Product Citations: 10

An HLA-A*11:01-Binding Neoantigen from Mutated NPM1 as Target for TCR Gene Therapy in AML.

In Cancers on 27 October 2021 by van der Lee, D. I., Koutsoumpli, G., et al.

Acute myeloid leukemia (AML) is a hematological malignancy caused by clonal expansion of myeloid progenitor cells. Most patients with AML respond to chemotherapy, but relapses often occur and infer a very poor prognosis. Thirty to thirty-five percent of AMLs carry a four base pair insertion in the nucleophosmin 1 gene (NPM1) with a C-terminal alternative reading frame of 11 amino acids. We previously identified various neopeptides from the alternative reading frame of mutant NPM1 (dNPM1) on primary AML and isolated an HLA-A*02:01-restricted T-cell receptor (TCR) that enables human T-cells to kill AML cells upon retroviral gene transfer. Here, we isolated T-cells recognizing the dNPM1 peptide AVEEVSLRK presented in HLA-A*11:01. The TCR cloned from a T-cell clone recognizing HLA-A*11:01+ primary AML cells conferred in vitro recognition and lysis of AML upon transfer to CD8 cells, but failed to induce an anti-tumor effect in immunodeficient NSG mice engrafted with dNPM1 OCI-AML3 cells. In conclusion, our data show that AVEEVSLRK is a dNPM1 neoantigen on HLA-A*11:01+ primary AMLs. CD8 cells transduced with an HLA-A*11:01-restricted TCR for dNPM1 were reactive against AML in vitro. The absence of reactivity in a preclinical mouse model requires further preclinical testing to predict the potential efficacy of this TCR in clinical development.

  • FC/FACS
  • Cancer Research

Serum of patients with acute myocardial infarction prevents inflammation in iPSC-cardiomyocytes.

In Scientific Reports on 4 April 2019 by Sattler, K., El-Battrawy, I., et al.

Acute myocardial infarction (MI) evokes a systemic inflammatory response and locally the degradation of the necrotic tissue, followed by scar formation. The mechanisms for containment of the infarct zone are not studied well. The study aimed to examine the response of healthy cardiomyocytes to serum of patients with myocardial infarction. Human iPSC-cardiomyocytes (iPSC-CM) generated from two healthy donors were incubated with serum of patients with MI with and without ventricular fibrillation (VF) or of healthy controls. Different cell adhesion molecules were studied by flow cytometry and immunostaining. Cellular electrophysiology was studied by patch clamp. The cell adhesion molecules CD54/ICAM-1, CD58/LFA-3 and CD321/JAM-A were expressed on iPSC-CM within the plasma membrane. Incubation with serum of MI patients reduced the levels of expression of CD54/ICAM-1 and CD321/JAM-A by 15-20%. VF serum was less effective than serum of MI patients without VF. MI serum or VF serum did not affect resting potential, action potential duration or maximum depolarization velocity. Myocardial infarction serum exerts anti-inflammatory effects on healthy cardiomyocytes without affecting their electrical activity, thus helping to contain the infarct zone and to protect healthy tissue. Ventricular fibrillation during MI drives healthy cardiomyocytes towards a pro-inflammatory phenotype.

  • FC/FACS
  • IF
  • ICC-IF
  • Homo sapiens (Human)
  • Cardiovascular biology
  • Immunology and Microbiology
  • Stem Cells and Developmental Biology

CD8+ T cells are frontline defenders against cancer and primary targets of current immunotherapies. In CLL, specific functional alterations have been described in circulating CD8+ T cells, yet a global view of the CD8+ T cell compartment phenotype and of its real impact on disease progression is presently elusive. We developed a multidimensional statistical analysis of CD8+ T cell phenotypic marker expression based on whole blood multi-color flow-cytometry. The analysis comprises both unsupervised statistics (hClust and PCA) and supervised classification methods (Random forest, Adaboost algorithm, Decision tree learning and logistic regression) and allows to cluster patients by comparing multiple phenotypic markers expressed by CD8+ T cells. Our results reveal a global CD8+ T cell phenotypic signature in CLL patients that is significantly modified when compared to healthy donors. We also uncover a CD8+ T cell signature characteristic of patients evolving toward therapy within 6 months after phenotyping. The unbiased, not predetermined and multimodal approach highlights a prominent role of the memory compartment in the prognostic signature. The analysis also reveals that imbalance of the central/effector memory compartment in CD8+ T cells can occur irrespectively of the elapsed time after diagnosis. Taken together our results indicate that, in CLL patients, CD8+ T cell phenotype is imprinted by disease clinical progression and reveal that CD8+ T cell memory compartment alteration is not only a hallmark of CLL disease but also a signature of disease evolution toward the need for therapy.

  • Cancer Research
  • Immunology and Microbiology

Leukemia propagating cells in Philadelphia chromosome-positive ALL: a resistant phenotype with an adverse prognosis.

In Blood Research on 1 June 2018 by El-Menshawy, N., Abd-Aziz, S. M., et al.

Targeted therapy has revolutionized the management of Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL); however, relapse still occurs because of the presence of quiescent stem cells, termed leukemia propagating cells (LPCs). This study aimed to assess the phenotypic diversity of LPCs in adult patients with Ph+ B-Acute ALL (B-ALL) and to assess its prognostic impact.
Seventy adults with newly diagnosed Ph+ B-ALL were recruited at the Mansoura Oncology Center. Multiparameter flow cytometry studies of mononuclear blast cells for cluster of differentiation (CD)34, CD38, and CD58 were performed.
Seventeen patients had blasts with the pattern of LPCs (CD34+CD38-CD58-), while 53 cases had other diverse phenotypic patterns. The rate of complete response was significantly lower in patients with the LPC phenotype (47% vs. 81%, P=0.006). The median time to achieve a complete response was prolonged in patients with the CD34+CD38-CD58- phenotype (48 vs. 32 days, P=0.016). The three-year overall survival was significantly lower in patients with the CD34+CD38-CD58- phenotype (37% vs. 55% respectively, P=0.028). Multivariate analysis showed that the CD34+CD38- CD58- phenotype was an independent risk factor for overall survival.
The presence of CD34+CD38-CD58- LPCs at diagnosis allows rapid identification of higher risk patients. Risk stratification of these patients is needed to further guide therapy and develop effective LPCs-targeted therapy to improve treatment outcome.

  • FC/FACS
  • Homo sapiens (Human)
  • Cancer Research
  • Cardiovascular biology
  • Genetics

The link between Graves' disease (GD) and Hashimoto's thyroiditis (HT) has been debated for decades due to the shared pathological and immunological components. Immune intolerance and inappropriate immune reaction against self-thyroid cells are distinctive features of both diseases, but definitive data for the clinical presentation of autoimmune thyroid disease remains unclear. To analyse the expression of T-regulatory cells, CD58, the CD4/CD8 ratio and the neutrophil/lymphocyte ratio and to determine if these parameters could be used as differentiating markers between auto- and non-immune thyroid diseases, 75 patients were enrolled in this study-40 with autoimmune thyroid disease (HT and GD ), 15 with non-immune thyroid disease, and 20 healthy controls. Multicolour flow cytometry was used to analyse CD58, T-regulatory cells (Treg) expressing CD4, CD25, HLA-DR and CD8 using different stained fluorescent labelled monoclonal antibodies. The neutrophils and lymphocyte ratio was also measured. Lower expression of Treg with higher expression of CD58 (LFA-3) was found in the autoimmune diseases when compared with the non-immune and control groups. ROC analysis showed that CD58 with sensitivity 88% and specificity 100% with cut-off value more than or equal to 29.9 indicates Hashimoto's disease, while lower value indicates colloid goitre, and higher or equal to 29.84 indicates Graves' disease and lower indicates colloid goitre with 100% sensitivity and specificity. CD58 could be used as differentiating marker between immune and non-immune thyroid disorders.

  • Homo sapiens (Human)
  • Endocrinology and Physiology
  • Immunology and Microbiology
View this product on CiteAb