Product Citations: 16

Preclinical safety and efficacy of lentiviral-mediated gene therapy for leukocyte adhesion deficiency type I.

In Molecular Therapy. Methods Clinical Development on 8 September 2022 by Mesa-Nuñez, C., Damián, C., et al.

Leukocyte adhesion deficiency type I (LAD-I) is a primary immunodeficiency caused by mutations in the ITGB2 gene, which encodes for the CD18 subunit of β2-integrins. Deficient expression of β2-integrins results in impaired neutrophil migration in response to bacterial and fungal infections. Using a lentiviral vector (LV) that mediates a preferential myeloid expression of human CD18 (Chim.hCD18-LV), we first demonstrated that gene therapy efficiently corrected the phenotype of mice with severe LAD-I. Next, we investigated if the ectopic hCD18 expression modified the phenotypic characteristics of human healthy donor hematopoietic stem cells and their progeny. Significantly, transduction of healthy CD34+ cells with the Chim.hCD18-LV did not modify the membrane expression of CD18 nor the adhesion of physiological ligands to transduced cells. Additionally, we observed that the repopulating properties of healthy CD34+ cells were preserved following transduction with the Chim.hCD18-LV, and that a safe polyclonal repopulation pattern was observed in transplanted immunodeficient NOD scid gamma (NSG) mice. In a final set of experiments, we demonstrated that transduction of CD34+ cells from a severe LAD-I patient with the Chim.hCD18-LV restores the expression of β2-integrins in these cells. These results offer additional preclinical safety and efficacy evidence supporting the gene therapy of patients with severe LAD-I.
© 2022.

  • FC/FACS

Abacavir Increases Purinergic P2X7 Receptor Activation by ATP: Does a Pro-inflammatory Synergism Underlie Its Cardiovascular Toxicity?

In Frontiers in Pharmacology on 20 April 2021 by Collado-Diaz, V., Martinez-Cuesta, M. A., et al.

The cardiovascular toxicity of Abacavir is related to its purinergic structure. Purinergic P2X7-receptors (P2X7R), characterized by activation by high concentrations of ATP and with high plasticity, seem implicated. We appraise the nature of the interplay between Abacavir and P2X7R in generating vascular inflammation. The effects of Abacavir on leukocyte-endothelium interactions were compared with those of its metabolite carbovir triphosphate (CBV-TP) or ATP in the presence of apyrase (ATP-ase) or A804598 (P2X7R-antagonist). CBV-TP and ATP levels were evaluated by HPLC, while binding of Abacavir, CBV-TP and ATP to P2X7R was assessed by radioligand and docking studies. Hypersensitivity studies explored a potential allosteric action of Abacavir. Clinical concentrations of Abacavir (20 µmol/L) induced leukocyte-endothelial cell interactions by specifically activating P2X7R, but the drug did not show affinity for the P2X7R ATP-binding site (site 1). CBV-TP levels were undetectable in Abacavir-treated cells, while those of ATP were unaltered. The effects of Abacavir were Apyrase-dependent, implying dependence on endogenous ATP. Exogenous ATP induced a profile of proinflammatory actions similar to Abacavir, but was not entirely P2X7R-dependent. Docking calculations suggested ATP-binding to sites 1 and 2, and Abacavir-binding only to allosteric site 2. A combination of concentrations of Abacavir (1 µmol/L) and ATP (0.1 µmol/L) that had no effect when administered separately induced leukocyte-endothelium interactions mediated by P2X7R and involving Connexin43 channels. Therefore, Abacavir acts as a positive allosteric modulator of P2X7R, turning low concentrations of endogenous ATP themselves incapable of stimulating P2X7R into a functional proinflammatory agonist of the receptor.
Copyright © 2021 Collado-Díaz, Martinez-Cuesta, Blanch-Ruiz, Sánchez-López, García-Martínez, Peris, Usach, Ivorra, Lacetera, Martín-Santamaría, Esplugues and Alvarez.

  • Cardiovascular biology
  • Immunology and Microbiology
  • Pharmacology

Ethylmalonic encephalopathy 1 initiates overactive autophagy in depleted uranium-induced cytotoxicity in the human embryonic kidney 293 cells.

In Journal of Biochemical and Molecular Toxicology on 1 March 2021 by Hao, Y., Huang, J., et al.

The kidney is the target of the acute toxicity of depleted uranium (DU). However, the mechanism of DU-induced cytotoxicity is not clear. The study was to demonstrate the role of autophagy in DU-induced cytotoxicity and to determine the potential mechanism. We confirmed that after a 4-h exposure to DU, the autophagic vacuoles and the autophagy marker light chain 3-II in the human embryonic kidney 293 cells (HEK293) increased, and cytotoxicity decreased by abrogation of excessive autophagy using autophagy inhibitor. We also found activation of nucleus p53 and inhibiting mTOR pathways in DU-treated HEK293 cells. Meanwhile, ethylmalonic encephalopathy 1 (ETHE1) decreased as the exposure dose of DU increased, with increasing autophagy flux. We suggested that by reducing ETHE1, activation of the p53 pathway, and inhibiting mTOR pathways, DU might induce overactive autophagy, which affected the cytotoxicity. This study will provide a novel therapeutic target for the treatment of DU-induced cytotoxicity.
© 2020 Wiley Periodicals LLC.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
  • Cell Biology
  • Stem Cells and Developmental Biology

Leukocyte Integrin Antagonists as a Novel Option to Treat Dry Age-Related Macular Degeneration.

In Frontiers in Pharmacology on 16 February 2021 by Baiula, M., Caligiana, A., et al.

Age-related macular degeneration (AMD) is a complex multifactorial degenerative disease that leads to irreversible blindness. AMD affects the macula, the central part of the retina responsible for sharp central vision. Retinal pigment epithelium (RPE) is the main cellular type affected in dry AMD. RPE cells form a monolayer between the choroid and the neuroretina and are in close functional relationship with photoreceptors; moreover, RPE cells are part of the blood retina barrier that is disrupted in ocular diseases such as AMD. During ocular inflammation lymphocytes and macrophages are recruited, contact RPE and produce pro-inflammatory cytokines, which play an important role in AMD pathogenesis. The interaction between RPE and immune cells is mediated by leukocyte integrins, heterodimeric transmembrane receptors, and adhesion molecules, including VCAM-1 and ICAM-1. Within this frame, this study aimed to characterize RPE-leukocytes interaction and to investigate any potentially beneficial effects induced by integrin antagonists (DS-70, MN27 and SR714), developed in previous studies. ARPE-19 cells were co-cultured for different incubation times with Jurkat cells and apoptosis and necrosis levels were analyzed by flow cytometry. Moreover, we measured the mRNA levels of the pro-inflammatory cytokine IL-1β and the expression of adhesion molecules VCAM-1 and ICAM-1. We found that RPE-lymphocyte interaction increased apoptosis and necrosis levels in RPE cells and the expression of IL-1β. This interaction was mediated by the binding of α4β1 and αLβ2 integrins to VCAM-1 and ICAM-1, respectively. The blockade of RPE-lymphocyte interaction with blocking antibodies highlighted the pivotal role played by integrins. Therefore, α4β1 and αLβ2 integrin antagonists were employed to disrupt RPE-lymphocyte crosstalk. Small molecule integrin antagonists proved to be effective in reducing RPE cell death and expression of IL-1β, demonstrating that integrin antagonists could protect RPE cells from detrimental effects induced by the interaction with immune cells recruited to the retina. Overall, the leukocyte integrin antagonists employed in the present study may represent a novel opportunity to develop new drugs to fight dry AMD.
Copyright © 2021 Baiula, Caligiana, Bedini, Zhao, Santino, Cirillo, Gentilucci, Giacomini and Spampinato.

  • FC/FACS
  • Homo sapiens (Human)
  • Pharmacology

The HSP GRP94 interacts with macrophage intracellular complement C3 and impacts M2 profile during ER stress.

In Cell Death & Disease on 22 January 2021 by Chaumonnot, K., Masson, S., et al.

The role of GRP94, an endoplasmic reticulum (ER) stress protein with both pro- and anti-inflammatory functions, has not been investigated in macrophages during ER stress, whereas ER stress has been reported in many diseases involving macrophages. In this work, we studied GRP94 in M1/LPS + IFNγ and M2/IL-4 primary macrophages derived from human monocytes (isolated from buffy coats), in basal and ER stress conditions induced by thapsigargin (Tg), an inducer of ER calcium depletion and tunicamycin (Tm), an inhibitor of N-glycosylation. We found that GRP94 was expressed on the membrane of M2 but not M1 macrophages. In M2, Tg, but not Tm, while decreased GRP94 content in the membrane, it induced its secretion. This correlated with the induction of a pro-inflammatory profile, which was dependent on the UPR IRE1α arm activation and on a functional GRP94. As we previously reported that GRP94 associated with complement C3 at the extracellular level, we analyzed C3 and confirmed GRP94-C3 interaction in our experimental model. Further, Tg increased this interaction and, in these conditions, C3b and cathepsin L were detected in the extracellular medium where GRP94 co-immunoprecipitated with C3 and C3b. Finally, we showed that the C3b inactivated fragment, iC3b, only present on non-stressed M2, depended on functional GRP94, making both GRP94 and iC3b potential markers of M2 cells. In conclusion, our results show that GRP94 is co-secreted with C3 under ER stress conditions which may facilitate its cleavage by cathepsin L, thus contributing to the pro-inflammatory profile observed in stressed M2 macrophages.

  • FC/FACS
  • Cell Biology
  • Immunology and Microbiology
View this product on CiteAb