Product Citations: 9

Our investigation uncovers that nanomolar concentrations of salinomycin, monensin, nigericin, and narasin (a group of potassium/sodium cation carriers) robustly enhance surface expression of CD20 antigen in B-cell-derived tumor cells, including primary malignant cells of chronic lymphocytic leukemia and diffuse large B-cell lymphoma. Experiments in vitro, ex vivo, and animal model reveal a novel approach of combining salinomycin or monensin with therapeutic anti-CD20 monoclonal antibodies or anti-CD20 CAR-T cells, significantly improving non- Hodgkin lymphoma (NHL) therapy. The results of RNA-seq, genetic editing, and chemical inhibition delineate the molecular mechanism of CD20 upregulation, at least partially, to the downregulation of MYC, the transcriptional repressor of the MS4A1 gene encoding CD20. Our findings propose the cation carriers as compounds targeting MYC oncogene, which can be combined with anti-CD20 antibodies or adoptive cellular therapies to treat NHL and mitigate resistance, which frequently depends on the CD20 antigen loss, offering new solutions to improve patient outcomes.

  • Homo sapiens (Human)
  • Cardiovascular biology
  • Immunology and Microbiology

To assess the effects of combining low-dose atorvastatin calcium with evolocumab on complement regulatory protein levels, lipid profiles, and cardiac function in patients with coronary heart disease (CHD).
A prospective randomized controlled study was conducted, with 180 CHD patients enrolled from Guang'anmen Hospital, China Academy of Chinese Medical Sciences, and the Second Hospital of Shanxi Medical University between February 2022 and April 2023. These patients were randomly assigned to either the control group (n = 90), receiving low-dose atorvastatin calcium, or the research group (n = 90), receiving a combination of low-dose atorvastatin calcium and evolocumab. The changes in cardiac function indices, levels of blood lipids and complement proteins, incidence of side effects, and cardiovascular events were compared between the two groups.
After treatment, both groups exhibited reductions in blood lipid levels. However, the research group demonstrated significantly lower levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) compared to the control group (all P < 0.001). Additionally, improvements in cardiac function indices were observed in both groups, with the research group displaying greater enhancements in cardiac output (CO), stroke volume (SV), and left ventricular ejection fraction (LVEF). Furthermore, the levels of complement regulatory proteins, including CD45, CD46, CD55, and CD59, increased in both groups after treatment, with the research group exhibiting significantly higher levels (all P < 0.001). Notably, the research group also exhibited a lower incidence of cardiovascular events.
The combined use of low-dose atorvastatin calcium and evolocumab effectively modulates complement regulatory protein levels, optimizes blood lipid profiles, and enhances cardiac function in patients with CHD. This combination therapy represents a promising approach for management of CHD.
AJTR Copyright © 2024.

  • Homo sapiens (Human)
  • Cardiovascular biology

The SARS-CoV-2 accessory factor ORF7a downregulates MHC class I surface expression

Preprint on BioRxiv : the Preprint Server for Biology on 30 May 2022 by Zheng, S., de Buhr, H., et al.

The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 500 million infections and more than six million deaths worldwide. Although the viral genomes of SARS-CoV-1 and SARS-CoV-2 share high sequence homology, the clinical and pathological features of COVID-19 differ profoundly from those of SARS. It is apparent that changes in viral genes contribute to the increased transmissibility of SARS-CoV-2 and pathology of COVID-19. Cytotoxic T lymphocytes play a key role in the elimination of virus-infected cells, mediated by recognition of virus-derived peptides that are presented on MHC class I molecules. Here, we show that SARS-CoV-2 can interfere with antigen presentation thereby evading immune surveillance. SARS-CoV-2 infection of monkey and human cell lines resulted in reduced cell-surface expression of MHC class I molecules. We identified a single viral gene product, the accessory factor open reading frame 7a (ORF7a), that mediates this effect. ORF7a interacts with HLA class I molecules in the ER, resulting in ER retention or impaired HLA heavy chain (HC) trafficking to the Golgi. Ultimately, these actions result in reduced HLA class I surface expression on infected cells. Whereas ORF7a from SARS-CoV-2 reduces surface HLA class I levels, the homologous ORF7a from the 2002 pandemic SARS-CoV-1 did not, suggesting that SARS-CoV-2 ORF7a acquired the ability to downregulate HLA-I during evolution of the virus. We identified a single amino acid in the SARS-CoV-1 ORF7a luminal domain that, upon mutating to the corresponding SARS-CoV-2 ORF7a sequence, induced a gain-of-function in HLA surface downregulation. By abrogating HLA class I antigen presentation via ORF7a, SARS-CoV-2 may evade host immune responses by inhibiting anti-viral cytotoxic T cell activity, thereby contributing to the pathology of COVID-19.

  • COVID-19
  • Immunology and Microbiology

The lytic polysaccharide monooxygenase CbpD promotes Pseudomonas aeruginosa virulence in systemic infection.

In Nature Communications on 23 February 2021 by Askarian, F., Uchiyama, S., et al.

The recently discovered lytic polysaccharide monooxygenases (LPMOs), which cleave polysaccharides by oxidation, have been associated with bacterial virulence, but supporting functional data is scarce. Here we show that CbpD, the LPMO of Pseudomonas aeruginosa, is a chitin-oxidizing virulence factor that promotes survival of the bacterium in human blood. The catalytic activity of CbpD was promoted by azurin and pyocyanin, two redox-active virulence factors also secreted by P. aeruginosa. Homology modeling, molecular dynamics simulations, and small angle X-ray scattering indicated that CbpD is a monomeric tri-modular enzyme with flexible linkers. Deletion of cbpD rendered P. aeruginosa unable to establish a lethal systemic infection, associated with enhanced bacterial clearance in vivo. CbpD-dependent survival of the wild-type bacterium was not attributable to dampening of pro-inflammatory responses by CbpD ex vivo or in vivo. Rather, we found that CbpD attenuates the terminal complement cascade in human serum. Studies with an active site mutant of CbpD indicated that catalytic activity is crucial for virulence function. Finally, profiling of the bacterial and splenic proteomes showed that the lack of this single enzyme resulted in substantial re-organization of the bacterial and host proteomes. LPMOs similar to CbpD occur in other pathogens and may have similar immune evasive functions.

  • FC/FACS
  • Immunology and Microbiology

Atypical hemolytic uremic syndrome (aHUS) and bone marrow transplantation-associated thrombotic microangiopathy (TA-TMA) are associated with excessive activation of the alternative complement pathway (AP) and with severe renal, but rarely cerebral, microvascular damage. Here, we compared AP activation and regulation in human glomerular and brain microvascular endothelial cells (GMVECs and BMVECs, respectively) unstimulated or stimulated by the proinflammatory cytokine, tumor necrosis factor (TNF). Compared with GMVECs and under both experimental conditions, BMVECs had increased gene expression of the AP-related genes C3, CFB, and C5 and decreased expression of CFD This was associated with increased expression in BMVECs (relative to GMVECs) of the genes for surface and soluble regulatory molecules (CD46, THBD, CD55, CFI, and CFH) suppressing formation of the AP C3 and C5 convertases. Of note, unlike GMVECs, BMVECs generated extremely low levels of C3a and C5a and displayed decreased activation of the AP (as measured by a lower percentage of Ba generation than GMVECs). Moreover, BMVECs exhibited increased function of CD141, mediating activation of the natural anticoagulant protein C, compared with GMVECs. We also found that the C3a receptor (C3aR) is present on both cell types and that TNF greatly increases C3AR1 expression in GMVECs, but only slightly in BMVECs. Higher AP activation and C3a generation in GMVECs than in BMVECs, coupled with an increase in C3aR production in TNF-stimulated GMVECs, provides a possible explanation for the predominance of renal damage, and the absence of cerebral injury, in individuals with episodes of aHUS and TA-TMA.
© 2018 Sartain et al.

  • FC/FACS
  • Homo sapiens (Human)
  • Biochemistry and Molecular biology
View this product on CiteAb